-
-
Save duhaime/8ac074b6b7bac1edeb3c1c7abbb36622 to your computer and use it in GitHub Desktop.
Separating points on a map
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def lat_lon_hex_mesh(bounds, d=3): | |
"""Creates a hexagonal lat/lon mesh within bounds that has a radial separation of d""" | |
lone, lonw, lats, latn = bounds | |
# heigt of equilatral triangle from radial distance sqrt(r^2 - (r/2)^2) | |
h = np.sqrt(0.75) * d | |
w = d / 2 | |
lat_vals = np.arange(lats, latn, h) | |
lon_vals = np.arange(lone, lonw, w) | |
data = np.tile([[0, 1], [1, 0]], | |
(int(np.ceil(len(lat_vals) / 2)), | |
int(np.ceil(len(lon_vals) / 2)))) | |
if len(lat_vals) % 2 != 0 or len(lon_vals) % 2 != 0: | |
data = data[0:len(lat_vals), 0:len(lon_vals)] | |
try: | |
grid = pd.DataFrame(data, index=lat_vals, columns=lon_vals) | |
except: | |
import ipdb | |
ipdb.set_trace() | |
return grid | |
def align_points_to_grid(df, bounds, d, grid_func=lat_lon_hex_mesh): | |
grid = grid_func(bounds, d) | |
new_df = df[['lat', 'lon']].copy(deep=True) | |
new_df['key'] = [base64.b64encode(s.encode()).decode()[::-1] for s in df.index] | |
new_df.sort_values('key') # ensure psuedo-random mapping, to minimize pushing | |
for site, point in new_df[['lat', 'lon']].iterrows(): | |
if point.lon < bounds[0] or bounds[1] < point.lon or \ | |
point.lat < bounds[2] or bounds[3] < point.lat: | |
# skip sites outside of bounds | |
continue | |
left = grid.columns.searchsorted(point.lon - 4 * d) | |
right = grid.columns.searchsorted(point.lon + 4 * d, side='right') | |
bottom = grid.index.searchsorted(point.lat - 4 * d) | |
top = grid.index.searchsorted(point.lat + 4 * d, side='right') | |
close_grid_points = grid.iloc[bottom:top, left:right] | |
best_dist = np.inf | |
grid_loc = [np.nan, np.nan] | |
for lat, col in close_grid_points.iterrows(): | |
for lon, val in col.iteritems(): | |
dist = vincenty(tuple(point), (lat, lon)).km | |
if val == 1 and dist < best_dist: | |
best_dist = dist | |
grid_loc = [lat, lon] | |
if np.isnan(grid_loc[0]): | |
import ipdb | |
ipdb.set_trace() | |
assert False, 'Failed to find a close empty grid-point - try a finer grid, or a larger radius?' | |
grid.loc[grid_loc[0], grid_loc[1]] = 2 | |
new_df.loc[site, ['lat', 'lon']] = grid_loc | |
return new_df | |
def p_basic_map(df, bounds, ax, d=0): | |
df = df.copy(deep=True) | |
lonw, lone, lats, latn = bounds | |
m = Basemap(ax=ax, llcrnrlon=lonw, llcrnrlat=lats, urcrnrlon=lone, urcrnrlat=latn) | |
m.drawmapboundary() # fill_color='aqua') | |
m.fillcontinents() # color='coral', lake_color='aqua') | |
# m.drawcoastlines() | |
# draw parallels and meridians. | |
# label parallels on right and top | |
# meridians on bottom and left | |
parallels = np.arange(-90., 91, 30.) | |
# labels = [left, right, top, bottom] | |
m.drawparallels(parallels, labels=[False, True, True, False], | |
dashes=[100, 0.0001], color='grey') | |
meridians = np.arange(0., 361., 30.) | |
m.drawmeridians(meridians, labels=[True, False, False, True], | |
dashes=[100, 0.0001], color='grey') | |
if d > 0: | |
new_lat_lon = align_points_to_grid(df, bounds, d=d) | |
for i in range(len(new_lat_lon)): | |
m.plot([df.iloc[i]['lon'], new_lat_lon.iloc[i]['lon']], | |
[df.iloc[i]['lat'], new_lat_lon.iloc[i]['lat']], | |
c='0.5') | |
points = m.scatter(x=new_lat_lon['lon'], y=new_lat_lon['lat'], c=df['c'], | |
cmap=get_segmented_colourmap(df['c']), | |
latlon=True, zorder=10, | |
edgecolors='1', lw=0.01) | |
else: | |
points = m.scatter(x=df['lon'], y=df['lat'], c=df['c'], | |
cmap=get_segmented_colourmap(df['c']), | |
latlon=True, zorder=10, | |
edgecolors='1', lw=0.01) | |
return m, points | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment