Skip to content

Instantly share code, notes, and snippets.

@duongtrung
Forked from agramfort/ranking.py
Created June 21, 2016 07:54
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save duongtrung/d15af29a46b935f3fd835a1b6a5a9b82 to your computer and use it in GitHub Desktop.
Save duongtrung/d15af29a46b935f3fd835a1b6a5a9b82 to your computer and use it in GitHub Desktop.
Pairwise ranking using scikit-learn LinearSVC
"""
Implementation of pairwise ranking using scikit-learn LinearSVC
Reference: "Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich,
T. Graepel, K. Obermayer.
Authors: Fabian Pedregosa <fabian@fseoane.net>
Alexandre Gramfort <alexandre.gramfort@inria.fr>
"""
import itertools
import numpy as np
from sklearn import svm, linear_model, cross_validation
def transform_pairwise(X, y):
"""Transforms data into pairs with balanced labels for ranking
Transforms a n-class ranking problem into a two-class classification
problem. Subclasses implementing particular strategies for choosing
pairs should override this method.
In this method, all pairs are choosen, except for those that have the
same target value. The output is an array of balanced classes, i.e.
there are the same number of -1 as +1
Parameters
----------
X : array, shape (n_samples, n_features)
The data
y : array, shape (n_samples,) or (n_samples, 2)
Target labels. If it's a 2D array, the second column represents
the grouping of samples, i.e., samples with different groups will
not be considered.
Returns
-------
X_trans : array, shape (k, n_feaures)
Data as pairs
y_trans : array, shape (k,)
Output class labels, where classes have values {-1, +1}
"""
X_new = []
y_new = []
y = np.asarray(y)
if y.ndim == 1:
y = np.c_[y, np.ones(y.shape[0])]
comb = itertools.combinations(range(X.shape[0]), 2)
for k, (i, j) in enumerate(comb):
if y[i, 0] == y[j, 0] or y[i, 1] != y[j, 1]:
# skip if same target or different group
continue
X_new.append(X[i] - X[j])
y_new.append(np.sign(y[i, 0] - y[j, 0]))
# output balanced classes
if y_new[-1] != (-1) ** k:
y_new[-1] = - y_new[-1]
X_new[-1] = - X_new[-1]
return np.asarray(X_new), np.asarray(y_new).ravel()
class RankSVM(svm.LinearSVC):
"""Performs pairwise ranking with an underlying LinearSVC model
Input should be a n-class ranking problem, this object will convert it
into a two-class classification problem, a setting known as
`pairwise ranking`.
See object :ref:`svm.LinearSVC` for a full description of parameters.
"""
def fit(self, X, y):
"""
Fit a pairwise ranking model.
Parameters
----------
X : array, shape (n_samples, n_features)
y : array, shape (n_samples,) or (n_samples, 2)
Returns
-------
self
"""
X_trans, y_trans = transform_pairwise(X, y)
super(RankSVM, self).fit(X_trans, y_trans)
return self
def predict(self, X):
"""
Predict an ordering on X. For a list of n samples, this method
returns a list from 0 to n-1 with the relative order of the rows of X.
Parameters
----------
X : array, shape (n_samples, n_features)
Returns
-------
ord : array, shape (n_samples,)
Returns a list of integers representing the relative order of
the rows in X.
"""
if hasattr(self, 'coef_'):
np.argsort(np.dot(X, self.coef_.T))
else:
raise ValueError("Must call fit() prior to predict()")
def score(self, X, y):
"""
Because we transformed into a pairwise problem, chance level is at 0.5
"""
X_trans, y_trans = transform_pairwise(X, y)
return np.mean(super(RankSVM, self).predict(X_trans) == y_trans)
if __name__ == '__main__':
# as showcase, we will create some non-linear data
# and print the performance of ranking vs linear regression
np.random.seed(1)
n_samples, n_features = 300, 5
true_coef = np.random.randn(n_features)
X = np.random.randn(n_samples, n_features)
noise = np.random.randn(n_samples) / np.linalg.norm(true_coef)
y = np.dot(X, true_coef)
y = np.arctan(y) # add non-linearities
y += .1 * noise # add noise
Y = np.c_[y, np.mod(np.arange(n_samples), 5)] # add query fake id
cv = cross_validation.KFold(n_samples, 5)
train, test = iter(cv).next()
# make a simple plot out of it
import pylab as pl
pl.scatter(np.dot(X, true_coef), y)
pl.title('Data to be learned')
pl.xlabel('<X, coef>')
pl.ylabel('y')
pl.show()
# print the performance of ranking
rank_svm = RankSVM().fit(X[train], Y[train])
print 'Performance of ranking ', rank_svm.score(X[test], Y[test])
# and that of linear regression
ridge = linear_model.RidgeCV(fit_intercept=True)
ridge.fit(X[train], y[train])
X_test_trans, y_test_trans = transform_pairwise(X[test], y[test])
score = np.mean(np.sign(np.dot(X_test_trans, ridge.coef_)) == y_test_trans)
print 'Performance of linear regression ', score
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment