Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
* Copyright (c) 2018 Terry Moore, MCCI
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network. It's pre-configured for the Adafruit
* Feather M0 LoRa.
*
* This uses OTAA (Over-the-air activation), where where a DevEUI and
* application key is configured, which are used in an over-the-air
* activation procedure where a DevAddr and session keys are
* assigned/generated for use with all further communication.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in
* arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt.
*
*******************************************************************************/
// NOTE: as of Feb 16 2020, release v2.3.2 of the mcci-catenda/arduino-lmic library works, but some later versions did not work. should test them.
// v2.3.2 release is here: https://github.com/mcci-catena/arduino-lmic/releases/tag/v2.3.2
//using cayenne: https://github.com/ElectronicCats/CayenneLPP
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "RTCZero.h" // https://github.com/arduino-libraries/RTCZero
#include <CayenneLPP.h> // https://github.com/ElectronicCats/CayenneLPP
#include <ArduinoJson.h> // https://github.com/bblanchon/ArduinoJson
#define RTC_SLEEP 0
RTCZero rtc;
CayenneLPP lpp(51);
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]= {0x22,0x22,0x22,0x22,0x22,0x22,0x22,0x22};
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]= {0xd6,0xe5,0x86,0x69,0xad,0x1b,0x72,0x96};
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from the TTN console can be copied as-is.
static const u1_t PROGMEM APPKEY[16] = { 0x58,0x0c,0x7a,0xc9,0x85,0x95,0x99,0xf2,0xca,0xcb,0x79,0x15,0x0a,0x45,0x6f,0x39 };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 30;
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, LMIC_UNUSED_PIN},
//.rxtx_rx_active = 0,
//.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
//.spi_freq = 8000000,
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
{
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print("devaddr: ");
Serial.println(devaddr, HEX);
Serial.print("artKey: ");
for (int i=0; i<sizeof(artKey); ++i) {
if (i != 0)
Serial.print("-");
Serial.print(artKey[i], HEX);
}
Serial.println("");
Serial.print("nwkKey: ");
for (int i=0; i<sizeof(nwkKey); ++i) {
if (i != 0)
Serial.print("-");
Serial.print(nwkKey[i], HEX);
}
Serial.println("");
}
// Disable link check validation (automatically enabled
// during join, but because slow data rates change max TX
// size, we don't use it in this example.
LMIC_setLinkCheckMode(0);
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
Serial.flush();
if(RTC_SLEEP) {
// Sleep for a period of TX_INTERVAL using single shot alarm
rtc.setAlarmEpoch(rtc.getEpoch() + TX_INTERVAL);
rtc.enableAlarm(rtc.MATCH_YYMMDDHHMMSS);
rtc.attachInterrupt(alarmMatch);
// USB port consumes extra current
USBDevice.detach();
// Enter sleep mode
rtc.standbyMode();
// Reinitialize USB for debugging
USBDevice.init();
USBDevice.attach();
}
else{
delay(TX_INTERVAL); // if not entering standby mode, do this
}
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
//os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:
Serial.println(F("EV_TXSTART"));
break;
default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned) ev);
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
lpp.reset();
lpp.addTemperature(1, 0.0);
lpp.addRelativeHumidity(2,0.0);
lpp.addBarometricPressure(3, 0.0);
//lpp.addGPS(3, 52.37365, 4.88650, 2);
// Prepare upstream data transmission at the next possible time.
//LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
//delay(5000);
//pinMode(13, INPUT_PULLUP);
pinMode(0,INPUT_PULLUP);
pinMode(1,INPUT_PULLUP);
pinMode(A0,INPUT_PULLUP);
pinMode(A1,INPUT_PULLUP);
pinMode(A2,INPUT_PULLUP);
pinMode(A3,INPUT_PULLUP);
pinMode(A4,INPUT_PULLUP);
pinMode(A5,INPUT_PULLUP);
pinMode(0,INPUT_PULLUP);
pinMode(1,INPUT_PULLUP);
pinMode(5,INPUT_PULLUP);
pinMode(9,INPUT_PULLUP);
pinMode(10,INPUT_PULLUP);
pinMode(11,INPUT_PULLUP);
pinMode(12,INPUT_PULLUP);
pinMode(13,INPUT_PULLUP);
Serial.begin(9600);
Serial.println(F("Starting"));
if(RTC_SLEEP) {
// Initialize RTC
rtc.begin();
// Use RTC as a second timer instead of calendar
rtc.setEpoch(0);
}
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF7,14);
LMIC_selectSubBand(1);
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}
void alarmMatch()
{
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.