Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/e5e5cd80256ac275b4273bc6eab8fda7 to your computer and use it in GitHub Desktop.
Save anonymous/e5e5cd80256ac275b4273bc6eab8fda7 to your computer and use it in GitHub Desktop.
Математические модели принятия решений

Математические модели принятия решений



Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны. Математика как наука с самого зарождения является инструментом в процессе поиска истины, и потому можно считать, что любые математические операции, даже самые простые, являются математическими методами принятия решений. В настоящее время под принятием решений понимается особый процесс человеческой деятельности, направленный на выбор наилучшего варианта альтернативы действий. Процессы принятия решения лежат в основе любой целенаправленной деятельности человека. Например, при создании новой техники машин, приборов, устройств , в строительстве при проектировании новых зданий, при организации функционирования и развития социальных процессов. В связи с этим появляется потребность в руководстве по принятию решений, которые упрощали бы этот процесс и придавали решениям большую надежность. Неизбежно требуется формализация процесса принятия решений. Как правило, важные решения принимаются опытными людьми, довольно далекими от математики, и особенно от ее новых методов, и опасающимися больше потерять от формализации, чем выиграть. Следовательно, от науки требуются рекомендации по оптимальному принятию решений. Сегодня для выработки такого решения требуется научный подход - слишком велики потери, связанные с ошибками. Оптимальные решения позволяют обеспечить предприятию максимально выгодные условия выпуска продукции максимальная прибыль при минимальных трудовых затратах, материальных и трудовых ресурсах. В настоящее время поиск оптимальных решений можно рассматривать при помощи разделов классической математики. Теория принятия решений развивает методы математической статистики - методы проверки гипотез. Различные величины потерь при выборе разных гипотез приводят к результатам, отличным от тех, которые получены методами статистической проверки гипотез. Выбор менее вероятной гипотезы может оказаться более предпочтительным, если потери в случае ошибочности такого выбора окажутся меньше потерь, вызванных ошибочностью выбора более вероятной конкурирующей гипотезы. Такие задачи называют статистическими задачами принятия решений. Для решения этих задач необходимо найти минимальное значение функции риска на множестве возможных исходов, то есть решить задачу отыскания условного экстремума. Как правило, для этих задач можно выделить цель и указать условия, то есть ограничения, при которых они должны быть решены. В роли входных данных выступает реальная задача - произвольным образом сформулированный набор данных о проблемной ситуации. Первым этапом решения задачи является ее формулировка - приведение данных к удобному для построения модели виду. Модель - приближенное описательное отображение действительности. Далее по построенной модели осуществляется поиск оптимальных решений и выдача рекомендаций. В принятии решений необходимо найти оптимум некоторого функционала в детерминированной или стохастической форме. Следует отметить две особенности. Во-первых, математические методы принятия решений для задач, связанных с различными направлениями деятельности человека, начинают взаимное проникновение друг в друга, например, оптимизационные задачи управления при переходе от непрерывных переменных к дискретным становятся задачами математического линейного программирования, оценка разделяющей функции. Во-вторых, исходные числовые данные как результат измерений или наблюдений. Математические методы в экономике и принятии решений можно разделить на несколько групп:. Оптимизация в математике - операция нахождения экстремума минимума или максимума целевой функции в некоторой области векторного пространства, ограниченного набором линейных или нелинейных равенств неравенств. Математическое программирование - это область математики, разрабатывающая теорию, численные методы решения многомерных задач с ограничениями. В отличие от классической математики, математическое программирование занимается математическими методами решения задач нахождения наилучших вариантов из всех возможных. В процессе проектирования ставится обычно задача определения наилучших, в некотором смысле, структуры или значений параметров объектов. Такая задача называется оптимизационной. Если оптимизация связана с расчётом оптимальных значений параметров при заданной структуре объекта, то она называется параметрической оптимизацией. Задача выбора оптимальной структуры является структурной оптимизацией. Стандартная математическая задача оптимизации формулируется таким образом. Для того, чтобы корректно поставить задачу оптимизации, необходимо задать:. Если минимизируемая функция не является выпуклой, то часто ограничиваются поиском локальных минимумов и максимумов: Если допустимое множество , то такая задача называется задачей безусловной оптимизации, в противном случае - задачей условной оптимизации. Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода эффективность её решения. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции. Существующие в настоящее время методы поиска можно разбить на три большие группы: По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации. По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы: Задачи оптимизации, в которых целевая функция и ограничения являются линейными функциями , разрешаются так называемыми методами линейного программирования. В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:. По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:. В зависимости от природы множества X задачи математического программирования классифицируются как: Если же все ограничения и целевая функция содержат лишь линейные функции, то это - задача линейного программирования. Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций. Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования: Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается. Другие оставляем принимать любые значения из области допустимых решений управляемые переменные. Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений? Базой является вероятностная модель реального явления или процесса, то есть математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей. Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр - вероятность Р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной. Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности Р. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель - на основе результатов наблюдений измерений, анализов, испытаний, опытов получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности см. На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение. Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий - относящиеся к теории вероятностной модели и относящиеся к практике выборке результатов наблюдений. Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию теоретический ряд соответствует выборочное среднее арифметическое практический ряд. Как правило, выборочные характеристики являются оценками теоретических. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели. Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции. Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели. Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность. Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик - вот суть вероятностно-статистических методов принятия решений. Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй - выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов. Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, то есть построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и тому подобного. Проведение расчётов и получение выводов чисто математическими средствами в рамках вероятностной модели. Толкование математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса , в частности, заключения о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и подобном. Далее рассматриваем основные вопросы построения вероятностных моделей в разнообразных случаях. Подчеркнём, что для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какие исходные данные нужны для его выбора и применения, какие решения должны быть приняты по результатам обработки данных, и так далее. Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим средством решения задач. Как понимать эти слова в разговоре руководителей завода? Она может быть либо годной, либо дефектной. Пусть из проверенных единиц продукции 30 окажутся дефектными, или из - , или из - 30 … Надо ли обвинять Струкова во лжи? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает орлом. А если на бросаний окажется 40 орлов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики. Пример может показаться несерьёзным. Жеребьёвка широко используется при организации промышленных технико-экономических экспериментов. Допустим, нужно сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах. При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло одного состава, а какие - в другое, но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения. Ответ может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из неё выбирается представительная часть: Поэтому желательно, чтобы каждая единица в контролируемой партии имела одинаковую вероятность быть выбранной. В производственных условиях выбор единиц продукции обычно делают не жребием, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел. Похожие проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности. Всюду нужна жеребьёвка или подобные ей меры. Допустим, что более сильная команда всегда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал только когда до финала у неё не будет игр с будущим чемпионом. Если такая игра запланирована, то вторая по силе команда в финал не попадёт. Чтобы избежать субъективизма, проводят жеребьёвку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4 из 7. Соответственно с вероятностью 3 из 7 вторая по силе команда покинет турнир досрочно. Чтобы выяснить, есть ли систематические погрешности, необходимо многократно измерить единицы продукции, характеристики которой известны например, стандартного образца. При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность. Встаёт вопрос, как по измерениям выявить систематическую погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к ужем рассмотренной. Действительно, сопоставим измерение с бросанием монеты: Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты. Итак, задача проверки на систематическую погрешность сведена к задаче проверки симметричности монеты. При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приёмочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений. Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором каждая из сторон-участников две или более ведут борьбу за свои интересы. Каждая сторона преследует свои цели и пользуется некоторой стратегией, которая может в свою очередь привести к выигрышу или проигрышу результат зависит от других игроков. Теория игр предоставляет возможность выбора наилучшей стратегии с учетом представлений о других игроках, их возможностях и возможных поступках. Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике, юриспруденции и других. Начиная с х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам. Борель выдвигают идею математической теории конфликта интересов. Математическая теория игр берёт своё начало из неоклассической экономики. Theory of Games and Economic Behavior. Эта область математики нашла некоторое отражение в общественной культуре. Нэш в году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Нэш показывает, что классический подход к конкуренции А. Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. Хотя теория игр первоначально и рассматривала экономические модели, вплоть до х она оставалась формальной теорией в рамках математики. Но уже с х гг. Во время Второй мировой войны и сразу после неё теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений. С середины х гг. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии это психологическая дисциплина и в управлении конфликтами в организации теория менеджмента. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Это сугубо психологические игры, основанные на трансакционном анализе. Понятие игры у Й. Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарах Г. Щедровицкого, основоположника организационно-деятельностного подхода. Во время Перестройки в СССР Г. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ организационно-деятельностные игры были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ стал Московский методологический кружок ММК. Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен. Его применяют для оправданных задач: Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауман, Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц, Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот, Жан Тироль. Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий. Большинство кооперативных игр описываются характеристической функцией, в то время как для остальных видов чаще используют нормальную или экстенсивную форму. Характеризующие признаки игры как математической модели ситуации:. Неопределенность поведения участников, связанная с наличием у каждого из них нескольких вариантов действий;. Взаимосвязанность поведения участников, поскольку результат, получаемый каждым из них, зависит от поведения всех участников;. Игры в экстенсивной, или расширенной, форме представляются в виде ориентированного дерева, где каждая вершина соответствует ситуации выбора игроком своей стратегии. Каждому игроку сопоставлен целый уровень вершин. Платежи записываются внизу дерева, под каждой листовой вершиной. На рисунке слева - игра для двух игроков. Игрок 1 ходит первым и выбирает стратегию F или U. Игрок 2 анализирует свою позицию и решает - выбрать стратегию A или R. Скорее всего первый игрок выберет U, а второй - A для каждого из них это оптимальные стратегии ; тогда они получат соответственно 8 и 2 очка. Экстенсивная форма очень наглядна, с её помощью особенно удобно представлять игры с более чем двумя игроками и игры с последовательными ходами. Если же участники делают одновременные ходы, то соответствующие вершины либо соединяются пунктиром, либо обводятся сплошной линией. В нормальной, или стратегической, форме игра описывается платёжной матрицей. Каждая сторона точнее, измерение матрицы - это игрок, строки определяют стратегии первого игрока, а столбцы - второго. На пересечении двух стратегий можно увидеть выигрыши, которые получат игроки. В примере справа, если игрок 1 выбирает первую стратегию, а второй игрок - вторую стратегию, то на пересечении мы видим? Игроки выбирали стратегии с максимальным для себя результатом, но проиграли, из-за незнания хода другого игрока. Обычно в нормальной форме представляются игры, в которых ходы делаются одновременно, или хотя бы полагается, что все игроки не знают о том, что делают другие участники. Такие игры с неполной информацией будут рассмотрены ниже. В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей. Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждой коалиции игроков. При этом предполагается, что выигрыш пустой коалиции равен нулю. Основания такого подхода можно найти ещё в книге фон Неймана и Моргенштерна. Образуется как бы игра для двух игроков. Но так как вариантов возможных коалиций много а именно 2N, где N - количество игроков , то выигрыш для C будет некоторой характеристической величиной, зависящей от состава коалиции. Формально игра в такой форме также называемая TU-игрой представляется парой N, v , где N - множество всех игроков, а v: Подобная форма представления может быть применена для всех игр, в том числе без трансферабельной полезности. В настоящее время существуют способы перевести любую игру из нормальной формы в характеристическую, но преобразование в обратную сторону возможно не во всех случаях. Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в х годах XX века хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования. Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего достойного поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведения, высказывались ещё Платоном. Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду модель экономического человека , однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков включая альтруизм. Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, оно лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения. С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни. Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот. Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр. Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды. Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий А, А и Б, Б будет больше, чем у первого. Игры с нулевой суммой - особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство. Исход такой игры может быть меньше или больше нуля. Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война. В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других. Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной. Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. В то же время есть интересные примеры игр с полной информацией: Сюда же относятся шахматы, шашки, го, манкала и другие. Часто понятие полной информации путают с похожим - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно. Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов. Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств. Большинство изучаемых игр дискретны: Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой обычно - шкалой времени , хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике. Это игры, результатом которых является набор правил для другой игры называемой целевой или игрой-объектом. Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов. Имитационное моделирование ситуационное моделирование - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику. Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте. Имитационное моделирование - это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью. Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов. Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Принятие решений в условиях неопределенности. Критерий Лапласа и принцип недостаточного основания. Нахождение минимального риска по Сэвиджу. Выбор оптимальной стратегии при принятии решения. Теория статистических решений как поиск оптимального недетерминированного поведения в условиях неопределенности. Критерии принятия решений Лапласа, минимаксный, Сэвиджа, Гурвица и различия между ними. Математические средства описания неопределенностей. Теоретические основы экономико-математических методов. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования. Применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. Построение экономических и математических моделей принятия решений в условиях неопределенности. Общая методология оптимизационных задач, оценка преимуществ выбранного варианта. Двойственность и симплексный метод решения задач линейного программирования. Потребность в прогнозировании в современном бизнесе, выявление объективных альтернатив исследуемых экономических процессов и тенденций. Группа статистических методов прогностики, проверка адекватности и точности математических моделей прогнозирования. Разработка и принятие правильного решения как задачи работы управленческого персонала организации. Деревья решений - один из методов автоматического анализа данных, преимущества их использования и область применения. Оптимизация решений динамическими методами. Расчет оптимальных сроков начала строительства объектов. Принятие решений в условиях риска определение математического ожидания и неопределенности оптимальная стратегия поведения завода, правило максимакса. Количественное обоснование управленческих решений по улучшению состояния экономических процессов методом математических моделей. Анализ оптимального решения задачи линейного программирования на чувствительность. Изучение на практике современных методов управления и организации производства, совершенствование применения этих методов. Описание ориентированной сети, рассчет показателей сети для принятия управленческих решений. Проблема выбора и оценка поставщика. Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т. PPT, PPTX и PDF-файлы представлены только в архивах. Главная База знаний "Allbest" Экономико-математическое моделирование Математические методы в принятии решений. Принятие решений как особый процесс человеческой деятельности, направленный на выбор наилучшего варианта действий. Особенности применения математических методов в данном процессе. Принципы оптимизации в математике, их эффективность. Модели можно разбить на 2 большие группы: Во-первых, математические методы принятия решений для задач, связанных с различными направлениями деятельности человека, начинают взаимное проникновение друг в друга, например, оптимизационные задачи управления при переходе от непрерывных переменных к дискретным становятся задачами математического линейного программирования, оценка разделяющей функции в статистических методах принятия решений может проводиться с помощью процедур линейного или квадратичного программирования и т. Во-вторых, исходные числовые данные как результат измерений или наблюдений в задачах принятия решений для реальных ситуаций не являются детерминированными, а чаще являются случайными величинами с известными или неизвестными законами распределения, поэтому последующая обработка данных требует применения методов математической статистики, теории нечетких множеств или теории возможностей. Математические методы в экономике и принятии решений можно разделить на несколько групп: Методы, учитывающие неопределенность, прежде всего, вероятностно-статистические. Методы построения и анализа имитационных моделей, 4. Методы анализа конфликтных ситуаций теория игр. Методы оптимизации Оптимизация в математике - операция нахождения экстремума минимума или максимума целевой функции в некоторой области векторного пространства, ограниченного набором линейных или нелинейных равенств неравенств. Теорию и методы решения задачи оптимизации изучает математическое программирование. Постановка задачи оптимизации В процессе проектирования ставится обычно задача определения наилучших, в некотором смысле, структуры или значений параметров объектов. Для того, чтобы корректно поставить задачу оптимизации, необходимо задать: Допустимое множество - множество ; решение математика игра 2. Целевую функцию - отображение ; 3. Критерий поиска max или min. Тогда решить задачу означает одно из: Если , то найти: Классификация методов оптимизации Общая запись задач оптимизации задаёт большое разнообразие их классов. Методы оптимизации классифицируют в соответствии с задачами оптимизации: В свою очередь из них выделяют две частные задачи: По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на: Помимо того, оптимизационные методы делятся на следующие группы: Определение границ системы оптимизации Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается 2. Другие оставляем принимать любые значения из области допустимых решений управляемые переменные 3. Выбор числового критерия оптимизации например, показателя эффективности 4. Вероятностно-статистические методы Суть вероятностно-статистических методов принятия решений Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений? Применение конкретного вероятностно-статистического метода состоит из трёх этапов: Теория игр Теория игр - математический метод изучения оптимальных стратегий в играх. Представление игр Игры представляют собой строго определённые математические объекты. Характеризующие признаки игры как математической модели ситуации: Наличие нескольких участников; 2. Неопределенность поведения участников, связанная с наличием у каждого из них нескольких вариантов действий; 3. Различие несовпадение интересов участников; 4. Взаимосвязанность поведения участников, поскольку результат, получаемый каждым из них, зависит от поведения всех участников; 5. Наличие правил поведения, известных всем участникам. Характеристическая функция В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей. Применение теории игр Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Описание и моделирование Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Нормативный анализ выявление наилучшего поведения С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Типы игр Кооперативные и некооперативные Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Симметричные и несимметричные А Б А 1, 2 0, 0 Б 0, 0 1, 2 Несимметричная игра Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. С нулевой суммой и с ненулевой суммой А Б А? Параллельные и последовательные В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. С полной или неполной информацией Важное подмножество последовательных игр составляют игры с полной информацией. Игры с бесконечным числом шагов Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Дискретные и непрерывные игры Большинство изучаемых игр дискретны: Метаигры Это игры, результатом которых является набор правил для другой игры называемой целевой или игрой-объектом. Методы построения и анализа имитационных моделей имитационное моделирование. К имитационному моделированию прибегают, когда: Критерии принятия оптимальных решений. Классификация экономико-математических методов и моделей. Метод Минти нахождения кратчайшего пути. Исследование операций, методы оптимизации. Прогнозирование в принятии управленческих решений. Применение метода анализа данных - деревья решений. Модели и методы принятия решений. Разработка управленческих решений на основе задач математического моделирования. Использование математических методов и моделей в управлении микроэкономическими системами. Другие документы, подобные "Математические методы в принятии решений". Нормальная форма для игры с 2 игроками, у каждого из которых по 2 стратегии.


Математические модели в принятии решений


Эта область научно-практической деятельности получила мощный стимул к развитию во время и сразу после второй мировой войны в рамках интеллектуального движения, связанного с терминами "кибернетика", "исследование операций", а позже - "системный анализ", "информатика". Впрочем, имелись и вполне практические задачи. Одна из них - контроль качества боеприпасов, вышедшая на первый план именно в годы второй мировой войны. Модели и основанные на них методы статистического контроля качества приносят по западной оценке, и по нашему мнению, основанному на опыте СССР и России, в частности, на анализе организационно-экономических результатов работы служб технического контроля на промышленных предприятиях наибольший экономический эффект среди всех экономико-математических методов и моделей принятия решений. Для ориентации в практически необозримом море математических моделей экономических явлений и процессов короче: Первым основанием для классификации служит отношение к практической деятельности. Экономико-математические модели делятся на:. Отметим большое практическое значение моделей логистики или, в другой терминологии, управления запасами. В последние годы интерес вызывает моделирование финансового рынка. Важная проблема - учет неопределенности. Основное место она занимает в вероятностно-статистических моделях экономических и социально-экономических явлений и процессов. Проблемы устойчивости к допустимым отклонениям исходных данных и предпосылок модели для социально-экономических моделей рассматриваются в. Особое место занимают имитационные системы, позволяющие отвечать на вопросы типа: Основа имитации смысл которой мы будем понимать как анализ экономического явления с помощью вариантных расчетов - это математическая модель. Напомним, что имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты. Таким образом, под имитацией понимается численный метод проведения машинных экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени, при этом имитационный эксперимент состоит, как правило, из следующих 6 этапов:. Имитационное моделирование simulation modelling широко применяется в различных областях, в том числе в экономике. Наиболее перспективным представляется синтез экспертных оценок и математических моделей, впервые осуществленный в нашей стране еще в е годы. При построении, изучении и применении процедур принятия решений используются различные математические модели, именуемые в данном контексте экономико-математическими хотя они, как правило, могут с успехом использоваться вне экономики, как, в частности, эконометрические методы анализа эмпирических экономических данных. Экономико-математические модели можно разделить на несколько групп:. Во всех этих группах можно выделить статическую и динамическую постановки. При наличии фактора времени используют дифференциальные уравнения и разностные методы. Рассмотрим перечисленные группы моделей по отдельности. Со времен классических работ нобелевского лауреата по экономике академика АН СССР Л. Канторовича один из основных классов экономико-математических моделей - это модели оптимизации. Оптимальному управлению на основе экономико-математических моделей посвящена обширная литература, в ней используются такие термины, как оптимальное программирование и оптимальное планирование. В случае одного критерия принципиальных сложностей нет - применяют диалоговые компьютерные системы. Сложные проблемы - это выбор целевых функций, оценка устойчивости свойств оптимальности, многокритериальность. Для построения моделей с целью принятия решений используют теорию полезности. Исходная научная база таких моделей - теория вероятностей и математическая статистика. Выделяют как самостоятельное направление прикладную статистику. Она включает в себя прикладную математическую статистику, ее программное обеспечение и методы сбора статистических данных и интерпретации результатов расчетов. Только первая из этих трех областей одновременно входит и в математическую статистику. Последняя включает в себя, кроме прикладной математической статистики, также чисто математическую область, в которой статистические структуры рассматриваются как математические объекты. Они изучаются внутриматематическими методами. Эту область научных исследований в ряде публикаций называют "аналитической статистикой". Таким образом, математическая статистика состоит из прикладной математической статистики, ориентированной на практическое применение, и ветви чистой математики под названием "аналитическая статистика", полезность которой для применений не подтверждена. Можно всю жизнь доказывать теоремы в аналитической статистике, ни разу не обработав реальные данные и даже не думая об этом. В настоящее время аналитическая статистика постепенно вытесняет прикладную математическую статистику из научных журналов и учебных курсов. Так, в основном в России журнале по теории вероятностей и математической статистике "Теория вероятностей и ее применения" уже почти не встретишь статей, имеющих отношение к работе с реальными данными. Статистические методы активно применяются в различных областях экономики, причем в России - уже более лет. Как известно, эконометрика или эконометрия - это статистические методы анализа эмпирических экономических данных. Однако в ХХ в. Выполнены многочисленные исследования по различным конкретным разделам прикладной статистики и эконометрики:. Основной журнал в России, в котором публикуются исследования по прикладной статистике и, особенно, по планированию эксперимента, - это "Заводская лаборатория" раздел "Математические методы исследования". Теория конфликтных ситуаций теория игр. Теория игр более подходящее название - теория конфликта, или теория конфликтных ситуаций зародилась как теория рационального поведения двух игроков с противоположными интересами. Она наиболее проста, когда каждый из них стремится минимизировать свой средний проигрыш, то есть максимизировать свой средний выигрыш. Отсюда ясно, что теория игр склонна излишне упрощать реальное поведение в ситуации конфликта. Интересы реальных экономических агентов не всегда являются антагонистическими. Участники конфликта могут оценивать свой риск по иным критериям. В случае нескольких игроков возможны коалиции. Большое значение имеет устойчивость точек равновесия и коалиций. В экономике еще лет назад теория дуополии конкуренции двух фирм О. Курно была развита на основе соображений, которые мы сейчас относим к теории игр. Новый толчок дан классической монографией Дж. Моргенштейна, вышедшей вскоре после второй мировой войны. В учебниках по экономике обычно разбирается "дилемма заключенного" и точка равновесия по Нэшу ему присуждена Нобелевская премия по экономике за г. По теории игр имеется обширная литература, часть из которой непосредственно адресована экономистам. Однако в практической работе теория игр почти не используется. Если же это происходит, то она обычно выступает как часть более широкого подхода, ассоциированного с терминами "принятие решений", "конфликтная ситуация". Второе из указанных выше направлений экономико-математического моделирования, то есть посвященное моделям, которые непосредственно использовать в практической работе невозможно, обычно связывается с термином "математическая экономика". Имеется развитое направление исследований, получившее название математической экономики. В работах, относящихся к этому направлению, изучаются свойства математических моделей, построенных на основе формализации некоторых понятий экономической науки, таких как, например, конкурентное равновесие. Используя некоторые предположения о функциональных зависимостях например, о выпуклости функций и множеств , исследователи анализируют общие свойства моделей - доказывают теоремы о существовании экстремальных значений тех или иных параметров, изучают свойства точек равновесия, траекторий равновесного роста и т. Эти исследования содействовали становлению экономико-математических методов, помогали и помогают отточить математические методы, используемые в прикладных исследованиях. Однако с развитием математической экономики рассматриваемые в ней проблемы все более уходили от экономической реальности и становились чисто математическими. В результате этого в настоящее время математическая экономика представляет собой своеобразный раздел математики, изучающий математические конструкции, которые лишь с большой степенью произвола можно назвать экономическими моделями Математические модели реальных экономических явлений и процессов, разумеется, полезны и необходимы для успешной работы менеджеров, экономистов и инженеров, как на предприятиях, так и на государственной службе. Но нужны только те математические результаты, которые помогают экономисту в работе, в частности, методы теории принятия решений, эконометрики, прикладной математической статистики, экспертных оценок. Нельзя не согласиться с тем очевидным утверждением, что некоторые теоретические работы, которые в настоящее время не удается связать с практикой, в будущем могут оказаться полезными для решения реальных задач. Лучший пример - история ядерной физики. Однако нельзя одновременно не указать на многочисленные монографии и сборники статей, в которых чисто математические рассуждения даны "под экономическим соусом". Проверки практикой некоторые экономико-математические модели не выдерживают. В качестве примера рассмотрим модель поведения потребителей, которую обычно включают в учебники по микроэкономике. В ней потребитель предполагается совершенно рациональным, точно знающим, что он хочет максимизировать то есть знающим свою функцию полезности , а также полностью игнорирующим всех остальных потребителей, то есть действующим совершенно самостоятельно. Общество состоит из эгоистичных индивидуумов-атомов, отстаивающих только свои интересы, то есть живущих по принципу "человек человеку - волк". Законы правового государства удерживают такое общество от самоуничтожения. Возможно, такая экономико-математическая модель годится для части жителей западных стран, прежде всего США. Бесспорно совершенно, что она не годится для нас, для русских. Мы плохо знаем, что нам нужно, действуем под влиянием друзей, общественного мнения, моды, привыкли жить в коллективе, общине, семье, говорим о соборности, игнорируем экономические стимулы. Несмотря на снижение реальных доходов в несколько раз, пока нет бунтов. Хотя значительная часть предприятий стоит, работники не уходят, а менеджеры директора их не увольняют. Сейчас зарплата профессора сравнима с зарплатой уборщицы в метро и в несколько раз меньше дохода продавца коммерческого киоска. Но, вопреки монетаристским экономическим теориям, профессора не рвутся в продавцы. И рабочие зачастую выпускают продукцию, не получая зарплату. И потому Россия жива. Западные экономические теории не годятся не только для России. Они не подходят для исламских стран, для Индии и Китая, и т. Нобелевская премия по экономике за год была присуждена В. Кингману за экспериментальное изучение поведения потребителей. Установлено, что лица, чье потребительское поведение может быть описано функцией полезности, реально составляют очень незначительную часть человеческих популяций. Остальные в части экономики действуют преимущественно иррационально, точнее, их действия являются рациональными на другом более высоком уровне. Подавляющая часть людей вполне осознанно может пойти на ограничение личных потребностей ради общественного блага. Кингмана показывают, что рассматриваемая микроэкономическая теория поведения потребителей не соответствует реальности. Другой пример относится к прикладной статистике. Установлено, что распределения результатов реальных измерений наблюдений, испытаний, опытов , как правило, не являются нормальными. Поэтому любые вероятностно-статистические модели, опирающиеся на гипотезу нормальности, не могут быть адекватны реальности. В некоторых публикациях с помощью экономико-математических моделей сознательно вводят читателей в заблуждение. В качестве примера возьмем учебник Р. В нем "доказывается", что "инфляционный налог" равен дефициту бюджета. Отсюда рекомендация - для снижения инфляции необходимо ограничивать поступление новых денежных масс в оборот например, не выдавать зарплату. Однако это утверждение выводится в предположении, что суммарный выпуск постоянен, чего не было у нас - до г. Лэйарда отнюдь не смущает, что в другой главе, говоря о "мультипликаторе Кейнса", он рекомендует увеличивать государственные расходы в период спада производства. Принципиально ошибочно рассмотрение Р. Лэйардом спирали "заработная плата - цены", основанное на математической ошибке функция принимается за константу. Необходимо отметить, что название "Математическая экономика" носят и многие публикации, лишенные указанных выше недостатков, например, отличный учебник К. Методологический анализ - первый этап моделирования задач принятия решений, да и вообще любого исследования. Он определяет исходные постановки для теоретической проработки, а потому во многом и успех всего исследования. Подчеркнем, что анализ динамики развития методов моделирования позволяет выделить наиболее перспективные методы. В частности, для целей вероятностно-статистического моделирования наиболее перспективными оказались подходы нечисловой статистики. Объясните, пожалуйста, выдается ли диплом о профессиональной переподготовке? Если - нет, то почему? Здесь вначале говориться что выдается диплом, а внизу страницы сказано что нет Цитата: Как мне получить корочку по программе Менеджмент предприятия. Мы ищем курсы, покупаем и публикуем их для вас бесплатно. Учеба Академии Учителя Рейтинг Вопросы Магазин. Курсы Школа Высшее образование Мини-МБА Профессиональная переподготовка Повышение квалификации Сертификации. Галина Вяткина Мария Бовтунова. Информация Глоссарий Дипломы Вопросы и ответы Студенты Рейтинг выпускников Мнения Литература Учебные программы. Теория и методы разработки управленческих решений. IRR , алгоритмы , анализ , бюджет , внутренняя норма доходности , задача о максимальном потоке , законы , игры , институты , исследования , контрольные карты , лингвистическая переменная , маркетинг , основной капитал , потоки , потребление , прогнозирование , программирование , риск поставщика , срок окупаемости , статистика , теория , труд , целочисленное программирование , шкала отношений , элементы. Моделирование в теории принятия решений. Математическое моделирование при принятии решений Развитие математического моделирования. Россия, Орел, Орловский Государственный Технический Университет, Пользовательское соглашение Политика конфиденциальности Реклама на сайте Напишите нам.


https://gist.github.com/a17ff18ef761b6a9d76eda84c15f4d75
https://gist.github.com/5124c612d268d01746568d84c64e7530
https://gist.github.com/9c22e4925afcb44827c350309c7bc679
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment