Skip to content

Instantly share code, notes, and snippets.

@e9t
Forked from teamdandelion/labels_1024.tsv
Created April 12, 2017 11:26
Show Gist options
  • Save e9t/e75cc0a616cc9153a73f6b9fe12d4dbc to your computer and use it in GitHub Desktop.
Save e9t/e75cc0a616cc9153a73f6b9fe12d4dbc to your computer and use it in GitHub Desktop.
TensorBoard: TF Dev Summit Tutorial
We can make this file beautiful and searchable if this error is corrected: No tabs found in this TSV file in line 0.
7
2
1
0
4
1
4
9
5
9
0
6
9
0
1
5
9
7
3
4
9
6
6
5
4
0
7
4
0
1
3
1
3
4
7
2
7
1
2
1
1
7
4
2
3
5
1
2
4
4
6
3
5
5
6
0
4
1
9
5
7
8
9
3
7
4
6
4
3
0
7
0
2
9
1
7
3
2
9
7
7
6
2
7
8
4
7
3
6
1
3
6
9
3
1
4
1
7
6
9
6
0
5
4
9
9
2
1
9
4
8
7
3
9
7
4
4
4
9
2
5
4
7
6
7
9
0
5
8
5
6
6
5
7
8
1
0
1
6
4
6
7
3
1
7
1
8
2
0
2
9
9
5
5
1
5
6
0
3
4
4
6
5
4
6
5
4
5
1
4
4
7
2
3
2
7
1
8
1
8
1
8
5
0
8
9
2
5
0
1
1
1
0
9
0
3
1
6
4
2
3
6
1
1
1
3
9
5
2
9
4
5
9
3
9
0
3
6
5
5
7
2
2
7
1
2
8
4
1
7
3
3
8
8
7
9
2
2
4
1
5
9
8
7
2
3
0
4
4
2
4
1
9
5
7
7
2
8
2
6
8
5
7
7
9
1
8
1
8
0
3
0
1
9
9
4
1
8
2
1
2
9
7
5
9
2
6
4
1
5
8
2
9
2
0
4
0
0
2
8
4
7
1
2
4
0
2
7
4
3
3
0
0
3
1
9
6
5
2
5
9
2
9
3
0
4
2
0
7
1
1
2
1
5
3
3
9
7
8
6
5
6
1
3
8
1
0
5
1
3
1
5
5
6
1
8
5
1
7
9
4
6
2
2
5
0
6
5
6
3
7
2
0
8
8
5
4
1
1
4
0
3
3
7
6
1
6
2
1
9
2
8
6
1
9
5
2
5
4
4
2
8
3
8
2
4
5
0
3
1
7
7
5
7
9
7
1
9
2
1
4
2
9
2
0
4
9
1
4
8
1
8
4
5
9
8
8
3
7
6
0
0
3
0
2
6
6
4
9
3
3
3
2
3
9
1
2
6
8
0
5
6
6
6
3
8
8
2
7
5
8
9
6
1
8
4
1
2
5
9
1
9
7
5
4
0
8
9
9
1
0
5
2
3
7
8
9
4
0
6
3
9
5
2
1
3
1
3
6
5
7
4
2
2
6
3
2
6
5
4
8
9
7
1
3
0
3
8
3
1
9
3
4
4
6
4
2
1
8
2
5
4
8
8
4
0
0
2
3
2
7
7
0
8
7
4
4
7
9
6
9
0
9
8
0
4
6
0
6
3
5
4
8
3
3
9
3
3
3
7
8
0
8
2
1
7
0
6
5
4
3
8
0
9
6
3
8
0
9
9
6
8
6
8
5
7
8
6
0
2
4
0
2
2
3
1
9
7
5
1
0
8
4
6
2
6
7
9
3
2
9
8
2
2
9
2
7
3
5
9
1
8
0
2
0
5
2
1
3
7
6
7
1
2
5
8
0
3
7
2
4
0
9
1
8
6
7
7
4
3
4
9
1
9
5
1
7
3
9
7
6
9
1
3
7
8
3
3
6
7
2
8
5
8
5
1
1
4
4
3
1
0
7
7
0
7
9
4
4
8
5
5
4
0
8
2
1
0
8
4
5
0
4
0
6
1
7
3
2
6
7
2
6
9
3
1
4
6
2
5
4
2
0
6
2
1
7
3
4
1
0
5
4
3
1
1
7
4
9
9
4
8
4
0
2
4
5
1
1
6
4
7
1
9
4
2
4
1
5
5
3
8
3
1
4
5
6
8
9
4
1
5
3
8
0
3
2
5
1
2
8
3
4
4
0
8
8
3
3
1
7
3
5
9
6
3
2
6
1
3
6
0
7
2
1
7
1
4
2
4
2
1
7
9
6
1
1
2
4
8
1
7
7
4
8
0
7
3
1
3
1
0
7
7
0
3
5
5
2
7
6
6
9
2
8
3
5
2
2
5
6
0
8
2
9
2
8
8
8
8
7
4
9
3
0
6
6
3
2
1
3
2
2
9
3
0
0
5
7
8
1
4
4
6
0
2
9
1
4
7
4
7
3
9
8
8
4
7
1
2
1
2
2
3
2
3
2
3
9
1
7
4
0
3
5
5
8
6
3
2
6
7
6
6
3
2
7
8
1
1
7
5
6
4
9
5
1
3
3
4
7
8
9
1
1
6
9
1
4
4
5
4
0
6
2
2
3
1
5
1
2
0
3
8
1
2
6
7
1
6
2
3
9
0
1
2
2
0
8
9
9
0
2
5
1
9
7
8
1
0
4
1
7
9
6
4
2
6
8
1
3
7
5
4
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import tensorflow as tf
import urllib
LOGDIR = '/tmp/mnist_tutorial/'
GIST_URL = 'https://gist.githubusercontent.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180'
### MNIST EMBEDDINGS ###
mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True)
### Get a sprite and labels file for the embedding projector ###
urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv')
urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png')
def conv_layer(input, size_in, size_out, name="conv"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME")
act = tf.nn.relu(conv + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def fc_layer(input, size_in, size_out, name="fc"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
act = tf.nn.relu(tf.matmul(input, w) + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return act
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam):
tf.reset_default_graph()
sess = tf.Session()
# Setup placeholders, and reshape the data
x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 3)
y = tf.placeholder(tf.float32, shape=[None, 10], name="labels")
if use_two_conv:
conv1 = conv_layer(x_image, 1, 32, "conv1")
conv_out = conv_layer(conv1, 32, 64, "conv2")
else:
conv1 = conv_layer(x_image, 1, 64, "conv")
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64])
if use_two_fc:
fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1")
embedding_input = fc1
embedding_size = 1024
logits = fc_layer(fc1, 1024, 10, "fc2")
else:
embedding_input = flattened
embedding_size = 7*7*64
logits = fc_layer(flattened, 7*7*64, 10, "fc")
with tf.name_scope("xent"):
xent = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=y), name="xent")
tf.summary.scalar("xent", xent)
with tf.name_scope("train"):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent)
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
summ = tf.summary.merge_all()
embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding")
assignment = embedding.assign(embedding_input)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(LOGDIR + hparam)
writer.add_graph(sess.graph)
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
embedding_config = config.embeddings.add()
embedding_config.tensor_name = embedding.name
embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png'
embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv'
# Specify the width and height of a single thumbnail.
embedding_config.sprite.single_image_dim.extend([28, 28])
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config)
for i in range(2001):
batch = mnist.train.next_batch(100)
if i % 5 == 0:
[train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]})
writer.add_summary(s, i)
if i % 500 == 0:
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]})
saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i)
sess.run(train_step, feed_dict={x: batch[0], y: batch[1]})
def make_hparam_string(learning_rate, use_two_fc, use_two_conv):
conv_param = "conv=2" if use_two_conv else "conv=1"
fc_param = "fc=2" if use_two_fc else "fc=1"
return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param)
def main():
# You can try adding some more learning rates
for learning_rate in [1E-4]:
# Include "False" as a value to try different model architectures
for use_two_fc in [True]:
for use_two_conv in [True]:
# Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2)
hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv)
print('Starting run for %s' % hparam)
# Actually run with the new settings
mnist_model(learning_rate, use_two_fc, use_two_conv, hparam)
if __name__ == '__main__':
main()
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment