Skip to content

Instantly share code, notes, and snippets.

@egaumer
Last active June 26, 2019 20:21
Show Gist options
  • Save egaumer/4519444 to your computer and use it in GitHub Desktop.
Save egaumer/4519444 to your computer and use it in GitHub Desktop.
Some example queries using elastic.js
# simple match all query with term facet
ejs.Request()
.indices("myindex")
.types("mytype")
.query(ejs.MatchAllQuery())
.facet(
ejs.TermsFacet('url')
.field('url')
.size(20))
# filtered query with GeoDistance filter
ejs.Request()
.indices("myindex")
.types("mytype")
.query(
ejs.FilteredQuery(
ejs.MatchAllQuery(),
ejs.GeoDistanceFilter("location")
.distance(10)
.point(ejs.GeoPoint([40.53555, -75.57655]))))
# an advanced dismax query used to return "featured results"
ejs.Request()
.indices("myindex")
.types("mytype")
.query(
ejs.BoolQuery()
.should(
ejs.FilteredQuery(
ejs.DisMaxQuery()
.queries(ejs.MatchQuery('title', 'keyword'))
.queries(ejs.MatchQuery('content', 'keyword'))
.queries(ejs.MatchQuery('title', 'keyword')
.boost(2)
.type('phrase')
.slop(5))
.queries(ejs.MatchQuery('content', 'keyword')
.boost(2)
.type('phrase')
.slop(20))
.tieBreaker(0.1),
ejs.NotFilter(ejs.TypeFilter('featured'))))
.should(
ejs.ConstantScoreQuery()
.query(ejs.MatchQuery('keywords', 'keyword'))
.boost(1000000)))
# basic mult-select faceting
var colors = ejs.TermsFilter('color', ['green', 'red']),
shapes = ejs.TermsFilter('shape', ['square']),
tags = ejs.TermsFilter('tags', ['tag2', 'tag4']),
keywords = ejs.TermsFilter('keywords', ['keyword2', 'keyword3'])
ejs.Request()
.query(ejs.MatchAllQuery())
.filter(ejs.AndFilter([colors, shapes, tags, keywords]))
.facet(
ejs.TermsFacet('shapeFacet')
.field('shape')
.allTerms(true)
.facetFilter(ejs.AndFilter([colors, tags, keywords])))
.facet(
ejs.TermsFacet('colorFacet')
.field('color')
.allTerms(true)
.facetFilter(ejs.AndFilter([shapes, tags, keywords])))
.facet(
ejs.TermsFacet('tagsFacet')
.field('tags')
.allTerms(true)
.facetFilter(ejs.AndFilter([colors, shapes, keywords])))
.facet(
ejs.TermsFacet('keywordsFacet')
.field('keywords')
.allTerms(true)
.facetFilter(ejs.AndFilter([shapes, tags, keywords])))
@awkysam
Copy link

awkysam commented Aug 23, 2014

Aggregations with nested and using filters with and filter....... :)

ejs.Request().agg(
ejs.FilterAggregation('MainFilter').filter
(
ejs.AndFilter
([
ejs.TermFilter('Hospital','XXX'),
ejs.RangeFilter('log_date').from('2014-05-05 00:00:00.000').to('2014-05-11 00:00:00.000')
])
)
.agg
(
ejs.DateHistogramAggregation('DailyTime').field('log_date').interval('1d').format('E')
.agg
(
ejs.DateHistogramAggregation('HourlyTime').field('log_date').interval('1h')
.agg
(
ejs.SumAggregation('hourlyEDuration').field('EDuration')

                               )                                   
                               .agg
                               (
                                      ejs.CardinalityAggregation('hourlyECount').field('RowKEy')     
                               )                                  
                        )
                        .agg
                        (
                               ejs.SumAggregation('dailyEDuration').field('EDuration')

                        )

                        .agg
                        (
                               ejs.CardinalityAggregation('dailyECount').field('RowKEy')

                        )
                 )
    )   

@KevinOrtman
Copy link

These examples are extremely helpful, so I'm contributing back a query that I just wrote.

ejs.Request()
    .size(0)
    .query(ejs.FilteredQuery(
        ejs.MatchAllQuery(),
        ejs.BoolFilter()
            .must(ejs.PrefixFilter('host', 'els-host'))
            .must(ejs.RangeFilter('CollectionDateTime').gte('now-5m'))
    ))
    .agg(ejs.TermsAggregation('host').field('host')
        .agg(ejs.StatsAggregation('all').field('jvm.mem.heap_used_percent'))
        .agg(ejs.FilterAggregation('highwater')
            .filter(ejs.RangeFilter('jvm.mem.heap_used_percent').gt(68))
            .agg(ejs.ValueCountAggregation('count').field('jvm.mem.heap_used_percent'))
            )
        )
;

This query expands to the following JSON.

{
   "size": 0,
   "query": {
      "filtered": {
         "query": {"match_all": {}},
         "filter": {
            "bool": {
               "must": [
                  {"prefix": {"host": "els-host"}},
                  {"range": {"CollectionDateTime": {"gte": "now-5m"}}}
               ]
            }
         }
      }
   },
   "aggs": {
      "host": {
         "terms": {"field": "host"},
         "aggs": {
            "all": {"stats": {"field": "jvm.mem.heap_used_percent"}},
            "highwater": {
               "filter": {"range": {"jvm.mem.heap_used_percent": {"gt": 68}}
               },
               "aggs": {
                  "count": {
                     "value_count": {"field": "jvm.mem.heap_used_percent"}
                  }
               }
            }
         }
      }
   }
}

@ivanderos
Copy link

Good job.

@suhas-babyoye
Copy link

Thank you. I found these useful. Some of the queries I wrote(and combined painstakingly):

var searchQuery = ejs.BoolQuery()
    .should(ejs.MultiMatchQuery(["qualifiedProductName^1.5", "qualifiedProductName.shingles"])
        .query('{{query_string}}')
        .type('most_fields')
        .minimumShouldMatch('65%')
        .cutoffFrequency(0.01)
        .lenient(true)
        .boost(12))
    .should(ejs.NestedQuery('dcs')
        .query(ejs.MultiMatchQuery(["dcs.departmentName^8", "dcs.categoryName^2", "dcs.subCategoryName"])
            .query('{{query_string}}')
            .type('best_fields')
            .minimumShouldMatch('75%')
            .tieBreaker(0.3)
            .fuzziness('AUTO')
            .lenient(true)
            .boost(4)))
    .should(ejs.MultiMatchQuery([
            "collectionsFeature^1.5", "colourFeature^1.5",
            "materialFeature^1.5", "genderFeature^2",
            "sizeDiapersFeature^2", "longDesc"
        ])
        .query('{{query_string}}')
        .type('most_fields')
        .minimumShouldMatch('20%')
        .fuzziness('AUTO')
        .lenient(true)
        .boost(2))
    .should(ejs.MatchQuery('productId', '{{query_string}}'));

var topHitsAggs = ejs.Request()
    .agg(ejs.TermsAggregation('variantGrouping')
        .field('virtualGroupingId')
        .size(0)
        .order('max_score', 'desc')
        .agg(ejs.TopHitsAggregation('variants').size(60))
        .agg(ejs.MaxAggregation('max_score').lang('expression').script('_score')));

var facetAggs = JSON.parse(JSON.stringify(ejs.Request()
    .agg(ejs.NestedAggregation('dcs')
        .path('dcs')
        .agg(ejs.TermsAggregation('departmentName')
            .size(0)
            .field('dcs.departmentName.raw')
            .agg(ejs.TermsAggregation('categoryName')
                .size(0)
                .field('dcs.categoryName.raw')
                .agg(ejs.TermsAggregation('subCategoryName')
                    .size(0)
                    .field('dcs.subCategoryName.raw')))))
    .agg(ejs.HistogramAggregation('price')
        .field('defaultPrice')
        .minDocCount(1)
        .interval(500))
    .agg(ejs.StatsAggregation('priceStats')
        .field('defaultPrice'))
    .agg(ejs.HistogramAggregation('discountPercent')
        .field('discountPercent')
        .interval(10))
    .agg(ejs.TermsAggregation('brand')
        .field('brandName')
        .size(0)
        .order('_term', 'asc'))
    .agg(ejs.TermsAggregation('colour')
        .field('colourFeature.raw')
        .size(0)
        .order('_term', 'asc')).toJSON()));

# some code
return ejs.Request()
            .agg(ejs.NestedAggregation('dynamicAggs')
                .path('aggregationFields')
                .agg(ejs.FilterAggregation('dynamicfilter')
                    .filter(termFilter)
                    .agg(ejs.TermsAggregation('key')
                        .field('aggregationFields.key')
                        .size(0)
                        .agg(ejs.TermsAggregation('value')
                            .field('aggregationFields.value')
                            .size(0)))));

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment