Created
October 10, 2022 13:44
-
-
Save emilyriederer/4dcc6a05ea53c82db175e15f698a1fb6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# data source: http://web.mta.info/developers/turnstile.html | |
library(ggplot2) | |
library(dplyr) | |
library(tidyr) | |
library(readr) | |
# define read function with schema ---- | |
read_data <- function(url) { | |
readr::read_csv(url, | |
col_names = TRUE, | |
col_types = | |
cols( | |
`C/A` = col_character(), | |
UNIT = col_character(), | |
SCP = col_character(), | |
STATION = col_character(), | |
LINENAME = col_character(), | |
DIVISION = col_character(), | |
DATE = col_date(format = "%m/%d/%Y"), | |
TIME = col_time(format = ""), | |
DESC = col_character(), | |
ENTRIES = col_integer(), | |
EXITS = col_integer() | |
)) | |
} | |
# ridership data ---- | |
dates <- seq.Date(from = as.Date('2020-01-11'), to =, as.Date('2020-04-11'), by = '7 days') | |
dates_str <- format(dates, format = '%y%m%d') | |
dates_url <- sprintf('http://web.mta.info/developers/data/nyct/turnstile/turnstile_%s.txt', dates_str) | |
datasets <- lapply(dates_url, FUN = read_data) | |
full_data <- do.call(rbind, datasets) | |
full_data <- full_data[full_data$DESC == "REGULAR",] | |
names(full_data)[1] <- "CA" | |
rm(datasets) | |
# max date ---- | |
df_max_date <- | |
full_data %>% | |
group_by(CA, UNIT, SCP) %>% | |
summarize(min_date = min(DATE), max_date = max(DATE)) %>% | |
ungroup() %>% | |
arrange(max_date) %>% | |
mutate(TURNSTILE_ID = row_number()) | |
ggplot(df_max_date %>% filter(TURNSTILE_ID <= 50)) + | |
aes(y = -1*TURNSTILE_ID, yend = -1*TURNSTILE_ID, | |
x = min_date, xend = max_date) + | |
geom_segment( | |
arrow = arrow(length = unit(0.01, "npc")) | |
) + | |
geom_point() + | |
theme( | |
axis.text.y = element_blank(), | |
axis.title = element_blank() | |
) | |
df_data_miss <- | |
full_data %>% | |
transmute(T = as.POSIXct(DATE, TIME), | |
TURNSTILE_ID = paste(CA, UNIT, SCP), | |
ENTRIES) %>% | |
complete(T, TURNSTILE_ID) %>% | |
mutate(IND_MISSING = is.na(ENTRIES)) %>% | |
group_by(T) %>% | |
summarize(P = sum(IND_MISSING)) | |
ggplot(df_data_miss) + | |
aes(x = T, y = P) + | |
geom_point(color = 'darkblue') + | |
ylim(0,NA) + | |
theme( | |
#axis.text.y = element_blank(), | |
axis.title = element_blank(), | |
legend.position = 'none' | |
) | |
# monotonicity? ---- | |
#> normal ---- | |
df_monotonicity_good <- | |
full_data %>% | |
filter(CA == 'A033', UNIT == 'R170', SCP == '02-00-05') %>% | |
mutate(T = as.POSIXct(paste(DATE, TIME))) %>% | |
mutate(ENTRIES = (ENTRIES - min(ENTRIES)) / (max(ENTRIES) - min(ENTRIES)) ) | |
ggplot(df_monotonicity_good) + | |
aes(x = T, y = ENTRIES) + | |
geom_line(size = 1, color = "darkblue") + | |
theme( | |
axis.text.y = element_blank(), | |
axis.title = element_blank(), | |
legend.position = 'none' | |
) | |
#> this guy always goes down ---- | |
df_monotonicity_down <- | |
full_data %>% | |
filter(CA == 'N559', UNIT == 'R425', SCP == '00-06-01') %>% | |
mutate(T = as.POSIXct(paste(DATE, TIME))) %>% | |
mutate(ENTRIES = (ENTRIES - min(ENTRIES)) / (max(ENTRIES) - min(ENTRIES)) ) | |
ggplot(df_monotonicity_down) + | |
aes(x = T, y = ENTRIES) + | |
geom_line(size = 1, color = "darkblue") + | |
theme( | |
axis.text.y = element_blank(), | |
axis.title = element_blank() | |
) | |
#> this plummets and restarts ---- | |
df_monotonicity_drop <- | |
full_data %>% | |
filter(CA == 'PTH03', UNIT == 'R552', SCP == '00-00-07') %>% | |
mutate(T = as.POSIXct(paste(DATE, TIME))) %>% | |
mutate(ENTRIES = (ENTRIES - min(ENTRIES)) / (max(ENTRIES) - min(ENTRIES)) ) | |
ggplot(df_monotonicity_drop) + | |
aes(x = T, y = ENTRIES) + | |
geom_line(size = 1, color = "darkblue") + | |
theme( | |
axis.text.y = element_blank(), | |
axis.title = element_blank(), | |
text=element_text(size=16, family="Montserrat") | |
) | |
#> all of above ---- | |
df_monotonicity <- bind_rows(df_monotonicity_down, df_monotonicity_good, df_monotonicity_drop) | |
ggplot(df_monotonicity) + | |
aes(x = T, y = ENTRIES, color = paste(CA, UNIT, SCP)) + | |
geom_line(size = 1) + | |
scale_color_manual(values = c("darkblue", "cornflowerblue", "lightblue")) + | |
theme( | |
axis.text.y = element_blank(), | |
axis.title = element_blank(), | |
text=element_text(size=16, family="Montserrat"), | |
legend.position = "none" | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment