Created
November 13, 2018 21:26
-
-
Save empireshades/bf9c10684559e8bb258c90c211b17a61 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from textblob import TextBlob, Word | |
import sys | |
import random | |
from newspaper import Article | |
from fuzzywuzzy import fuzz | |
from nltk.stem import WordNetLemmatizer | |
def nphra(text): | |
# Extract Noun Phrases from text input | |
blob = TextBlob(text) | |
for np in blob.noun_phrases: | |
print(np) | |
def summary(text): | |
# Extract lemmatized (root) of every noun in text input | |
blob = TextBlob(text) | |
nouns = list() | |
for word, tag in blob.tags: | |
if tag == 'NN': | |
nouns.append(word.lemmatize()) | |
print(nouns) | |
def cmp_news(url1,url2): | |
'''Download, parse, compare two articles (urls). | |
Lemmatize parsed keywords, | |
and compare using fuzzy logic to return a numerical score''' | |
article1 = Article(url1) | |
article2 = Article(url2) | |
for i in article1, article2: | |
i.download() | |
i.parse() | |
i.nlp() | |
wordnet_lemmatizer = WordNetLemmatizer() | |
key1 = ' '.join([ wordnet_lemmatizer.lemmatize(i) for i in article1.keywords ]) | |
key2 = ' '.join([ wordnet_lemmatizer.lemmatize(i) for i in article2.keywords ]) | |
print(key1,'\n',key2) | |
print('fuzz.token_set: {}'.format(fuzz.token_set_ratio(key1, key2))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment