This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[LFR] : Wang, H., Abraham, Z., 2015. Concept drift detection for stream- ing data. In: International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–9. | |
[DDM] : Gama, J., Medas, P., Castillo, G., Rodrigues, P., 2004. Learning with drift detection. In: Advances in artificial intelligence–SBIA 2004. Springer, pp. 286–295. | |
[EDDM] : Baena-Garcıa, M., del Campo-A ́vila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R., 2006. Early drift detection method. In: Fourth international workshop on knowledge discov- ery from data streams. Vol. 6. pp. 77–86. | |
[ADWIN] : Bifet, A., Gavalda, R., 2007. Learning from time-changing data with adaptive windowing. In: SDM. Vol. 7. SIAM | |
[Resampling] : Harel, M., Mannor, S., El-Yaniv, R., Crammer, K., 2014. Concept drift detection through resampling. In: Proceedings of the 31st Inter- national Conference on Machine Learning (ICML-14). pp. 1009– 1017. | |
[OLINDDA] : Spinosa, E. J., de Leon F de Carvalho, A. P., Gama, J., 2007. Olindda: A cluster-based approach for detec |