Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Evaluate positions for sprinklers in rim factory
from typing import *
import numpy as np
import itertools
import functools
import math
import statistics
import matplotlib
import matplotlib.pyplot as plt
import random
from enum import IntEnum, auto
def cartesian(start: int, end: int) -> Iterator[Tuple[int,int]]:
Turn a single range iterator as in range(start,end+1) into a cartesian product
return itertools.product(range(start,end+1),repeat=2)
def map_tiles():
r = RADIUS+1
z = itertools.product(range(-MAP_SIZE,MAP_SIZE), repeat=2)
z = list(z)
for x in z:
yield x
def sprinkler(position:Tuple[int,int]) -> Iterator[Tuple[int,int]]:
for i, j in cartesian(0, RADIUS+1):
if i==0 and j == 0:
s = i**2+j**2
if math.sqrt(s) <= RADIUS:
yield (i+position[0], j+position[1])
yield (position[0]+i,position[1]-j)
yield (position[0]-i,j+position[1])
yield (position[0]-i,position[1]-j)
field = {}
class Fitness(IntEnum):
MEAN = auto()
PENALTY = auto()
#: Count the cells that are covered
COVERAGE = auto()
MEDIAN = auto()
#: Attempt to minimize the overall impact of the sprinklers
MINIMIZE = auto()
TOTAL = auto()
fitness_metric = Fitness.SPECIAL_REGION
special_region = set(cartesian(-5,5))
def evaluate_fitness(field: Dict[Tuple[int,int], int]) -> float:
# return functools.reduce(lambda x,y:x*y,field.values())**(1.0/len(field))
if fitness_metric == Fitness.MEAN:
r = sum(field.values())/(MAP_SIZE*2)**2
elif fitness_metric == Fitness.PENALTY:
average = sum(field.values())/len(field)
r = map(lambda x: -x if x < average*0.8 else x, field.values())
r = sum(r)
elif fitness_metric == Fitness.COVERAGE:
r = len(list(filter(lambda x:x>0, field.values())))
elif fitness_metric == Fitness.MEDIAN:
r = statistics.median(field.values())
elif fitness_metric == Fitness.MINIMIZE:
r = MAP_SIZE**2 - len(list(filter(lambda x:x>0, field.values())))
elif fitness_metric == Fitness.TOTAL:
r = sum(field.values())
elif fitness_metric == Fitness.SPECIAL_REGION:
r = sum(map(lambda x:x[1], filter(lambda x: x[0] in special_region,field.items())))
penalty_squares = len([(x,y) for x,y in special_region
if (x,y) not in field.keys()
if (x,y) not in excluded_positions])
r/= penalty_squares+1
return r
return sum(field.values())/len(field)
def simulate(positions: Iterable[Tuple[int,int]], rounds: int)\
-> Dict[Tuple[int,int],int]:
field = {(x,y):0 for x,y in cartesian(-MAP_SIZE, MAP_SIZE)
if (x,y) not in positions}
sprinklers = list(map(lambda x: itertools.cycle(sprinkler(x)), positions))
for _ in range(rounds):
for s in sprinklers:
pos = next(s)
if pos in field:
field[pos] += 1
return field
excluded_positions = frozenset([(0,0)])
def evaluate_alternatives(positions: Iterable[Tuple[int,int]],
to_try: int,
rounds: int) -> List[Tuple[int,int]]:
# Eliminate already extant positions
options = set(map_tiles()) - set(positions) - excluded_positions
options = list(options)
to_try = min(to_try, len(options)-1)
options = options[0:to_try]
best_fitness = -2**48
best_found = None
for i in options:
f = simulate(positions + [i], rounds)
fitness = evaluate_fitness(f)
if fitness > best_fitness:
best_found = i
best_fitness = fitness
print(f"best fitness found this round {best_fitness}")
return positions + [best_found]
def optimize(n: int, candidates:int, rounds: int):
positions = []
while len(positions) < n:
positions = evaluate_alternatives(positions, candidates, rounds)
fields = simulate(positions, rounds)
heatmap = np.array([[(fields[x,y] if (x,y) in fields and (x,y) not in excluded_positions else -5)
for x in range(-MAP_SIZE, MAP_SIZE)]
for y in range(-MAP_SIZE,MAP_SIZE)])
fig, ax = plt.subplots()
im = ax.imshow(heatmap)
for x,y in positions:
ax.text(x+MAP_SIZE,y+MAP_SIZE, "S" + ('e' if (x,y) in special_region else ''), ha='center', va='center', color='w')
for x,y in excluded_positions:
ax.text(x+MAP_SIZE,y+MAP_SIZE, "E", ha='center', va='center', color='w')
## for (x,y), v in fields.items():
## ax.text(x+MAP_SIZE,y+MAP_SIZE, math.floor(fields[x,y]), ha='center', va='center', color='w')
optimize(10, 80, 1500)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment