Created
March 22, 2021 23:26
-
-
Save epsilon-phase/ae2619e341d321e3c72bd518659449b8 to your computer and use it in GitHub Desktop.
Evaluate positions for sprinklers in rim factory
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import * | |
import numpy as np | |
import itertools | |
import functools | |
import math | |
import statistics | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import random | |
from enum import IntEnum, auto | |
RADIUS = 12 | |
MAP_SIZE = 24 | |
def cartesian(start: int, end: int) -> Iterator[Tuple[int,int]]: | |
""" | |
Turn a single range iterator as in range(start,end+1) into a cartesian product | |
""" | |
return itertools.product(range(start,end+1),repeat=2) | |
def map_tiles(): | |
r = RADIUS+1 | |
z = itertools.product(range(-MAP_SIZE,MAP_SIZE), repeat=2) | |
z = list(z) | |
random.shuffle(z) | |
for x in z: | |
yield x | |
def sprinkler(position:Tuple[int,int]) -> Iterator[Tuple[int,int]]: | |
for i, j in cartesian(0, RADIUS+1): | |
if i==0 and j == 0: | |
continue | |
s = i**2+j**2 | |
if math.sqrt(s) <= RADIUS: | |
yield (i+position[0], j+position[1]) | |
yield (position[0]+i,position[1]-j) | |
yield (position[0]-i,j+position[1]) | |
yield (position[0]-i,position[1]-j) | |
field = {} | |
class Fitness(IntEnum): | |
MEAN = auto() | |
PENALTY = auto() | |
#: Count the cells that are covered | |
COVERAGE = auto() | |
MEDIAN = auto() | |
#: Attempt to minimize the overall impact of the sprinklers | |
MINIMIZE = auto() | |
TOTAL = auto() | |
SPECIAL_REGION = auto() | |
fitness_metric = Fitness.SPECIAL_REGION | |
special_region = set(cartesian(-5,5)) | |
def evaluate_fitness(field: Dict[Tuple[int,int], int]) -> float: | |
# return functools.reduce(lambda x,y:x*y,field.values())**(1.0/len(field)) | |
r=0 | |
if fitness_metric == Fitness.MEAN: | |
r = sum(field.values())/(MAP_SIZE*2)**2 | |
elif fitness_metric == Fitness.PENALTY: | |
average = sum(field.values())/len(field) | |
r = map(lambda x: -x if x < average*0.8 else x, field.values()) | |
r = sum(r) | |
elif fitness_metric == Fitness.COVERAGE: | |
r = len(list(filter(lambda x:x>0, field.values()))) | |
elif fitness_metric == Fitness.MEDIAN: | |
r = statistics.median(field.values()) | |
elif fitness_metric == Fitness.MINIMIZE: | |
r = MAP_SIZE**2 - len(list(filter(lambda x:x>0, field.values()))) | |
elif fitness_metric == Fitness.TOTAL: | |
r = sum(field.values()) | |
elif fitness_metric == Fitness.SPECIAL_REGION: | |
r = sum(map(lambda x:x[1], filter(lambda x: x[0] in special_region,field.items()))) | |
penalty_squares = len([(x,y) for x,y in special_region | |
if (x,y) not in field.keys() | |
if (x,y) not in excluded_positions]) | |
r/= penalty_squares+1 | |
return r | |
return sum(field.values())/len(field) | |
def simulate(positions: Iterable[Tuple[int,int]], rounds: int)\ | |
-> Dict[Tuple[int,int],int]: | |
field = {(x,y):0 for x,y in cartesian(-MAP_SIZE, MAP_SIZE) | |
if (x,y) not in positions} | |
sprinklers = list(map(lambda x: itertools.cycle(sprinkler(x)), positions)) | |
for _ in range(rounds): | |
for s in sprinklers: | |
pos = next(s) | |
if pos in field: | |
field[pos] += 1 | |
return field | |
excluded_positions = frozenset([(0,0)]) | |
def evaluate_alternatives(positions: Iterable[Tuple[int,int]], | |
to_try: int, | |
rounds: int) -> List[Tuple[int,int]]: | |
# Eliminate already extant positions | |
options = set(map_tiles()) - set(positions) - excluded_positions | |
options = list(options) | |
random.shuffle(options) | |
to_try = min(to_try, len(options)-1) | |
options = options[0:to_try] | |
best_fitness = -2**48 | |
best_found = None | |
for i in options: | |
f = simulate(positions + [i], rounds) | |
fitness = evaluate_fitness(f) | |
if fitness > best_fitness: | |
best_found = i | |
best_fitness = fitness | |
print(f"best fitness found this round {best_fitness}") | |
return positions + [best_found] | |
def optimize(n: int, candidates:int, rounds: int): | |
positions = [] | |
while len(positions) < n: | |
positions = evaluate_alternatives(positions, candidates, rounds) | |
fields = simulate(positions, rounds) | |
heatmap = np.array([[(fields[x,y] if (x,y) in fields and (x,y) not in excluded_positions else -5) | |
for x in range(-MAP_SIZE, MAP_SIZE)] | |
for y in range(-MAP_SIZE,MAP_SIZE)]) | |
fig, ax = plt.subplots() | |
im = ax.imshow(heatmap) | |
for x,y in positions: | |
ax.text(x+MAP_SIZE,y+MAP_SIZE, "S" + ('e' if (x,y) in special_region else ''), ha='center', va='center', color='w') | |
for x,y in excluded_positions: | |
ax.text(x+MAP_SIZE,y+MAP_SIZE, "E", ha='center', va='center', color='w') | |
## for (x,y), v in fields.items(): | |
## ax.text(x+MAP_SIZE,y+MAP_SIZE, math.floor(fields[x,y]), ha='center', va='center', color='w') | |
fig.tight_layout() | |
plt.show() | |
optimize(10, 80, 1500) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment