Skip to content

Instantly share code, notes, and snippets.

@erdeszt
Last active June 6, 2020 14:48
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save erdeszt/9fbf7f2cf00401c7b857d929d7d00c91 to your computer and use it in GitHub Desktop.
Save erdeszt/9fbf7f2cf00401c7b857d929d7d00c91 to your computer and use it in GitHub Desktop.
Coq intro
Module Datatypes.
Inductive bool : Type := true | false.
(* Scala:
sealed trait Bool
case class True() extends Bool
case class False() extends Bool
*)
(* Unary natural numbers (Peano number) *)
Inductive nat : Type :=
| O
| S (n : nat).
(* Scala:
sealed trait Nat
case class O() extends Nat
case class S(n: Nat) extends Nat
*)
(* Built in support for naturals(and booleans) *)
Check (S (S (S O))).
Check 1.
End Datatypes.
(****************************************************)
Module Functions.
Definition negate (b : bool) : bool :=
match b with
| true => false
| false => true
end.
(* Scala:
def negate(b: Bool): Bool = {
b match {
case True() => False()
case False() => True()
}
}
*)
Fixpoint plus (n m : nat) : nat :=
match n with
| O => m
| S n' => S (plus n' m)
end.
(* Scala:
def plus(n: Nat)(m: Nat): Nat = {
n match {
case O() => m
case S(pred) => S(plus(pred)(m))
}
}
*)
End Functions.
(****************************************************)
Module Tests.
Example negate_true : negb true = false.
Proof. simpl. reflexivity. Qed.
Example four_plus_5 : 4 + 5 = 9.
Proof. simpl. reflexivity. Qed.
End Tests.
(****************************************************)
Module Proofs.
Theorem left_identity : forall (n : nat),
0 + n = n.
Proof.
intro n.
simpl.
reflexivity.
Qed.
Theorem right_identity : forall (n : nat),
n + 0 = n.
Proof.
intros.
simpl.
unfold plus.
Restart.
intros.
induction n.
- simpl. reflexivity.
- simpl. try reflexivity. rewrite IHn. reflexivity.
Qed.
Theorem plus_assoc : forall (n m o : nat),
n + (m + o) = (n + m) + o.
Proof.
intros.
induction n.
- simpl. reflexivity.
- simpl. rewrite IHn. reflexivity.
Qed.
Theorem plus_comm : forall (n m : nat),
n + m = m + n.
Proof.
intros.
induction n.
- simpl. rewrite right_identity. reflexivity.
- simpl. rewrite IHn.
Search plus.
rewrite plus_n_Sm.
reflexivity.
Qed.
End Proofs.
(****************************************************)
Module Categories.
Class Category (CAT : Type -> Type -> Type) : Type :=
{
id : forall {A : Type}, CAT A A;
compose : forall {A B C : Type}, CAT B C -> CAT A B -> CAT A C;
}.
(* Scala:
trait Category[CAT[_, _]] {
def id[A]: CAT[A, A]
def compose[A, B, C](bc: CAT[B, C], ab: CAT[A, B]): CAT[A, C]
}
*)
Class CorrectCategory (CAT : Type -> Type -> Type) (E : Category CAT) : Type :=
{
category_left_identity : forall {A B : Type} {f : CAT A B},
compose f id = f;
category_right_identity : forall {A B : Type} {f : CAT A B},
compose id f = f;
category_associativity : forall {A B C D : Type} {f : CAT C D} {g : CAT B C} {h : CAT A B},
compose f (compose g h) = compose (compose f g) h;
}.
(* Type alias *)
Definition Fn (A B : Type) := A -> B.
Instance fnCategory : Category Fn :=
{
id A := fun a => a;
compose A B C f g a := f (g a);
}.
(* Scala:
implicit val fnCategory: Category[Function1] = new Category[Function1] {
def id[A]: CAT[A, A] = (a: A) => a
def compose[A, B, C](bc: Function1[B, C], ab: Function1[A, B]): Function1[A, C] = {
(a: A) => bc.apply(ab.apply(a))
}
}
*)
Theorem fn_category_left_identity : forall (A B : Type) (f : Fn A B), compose f id = f.
Proof. intros. simpl. reflexivity. Qed.
Theorem fn_category_right_identity : forall (A B : Type) (f : Fn A B), compose id f = f.
Proof. intros. simpl. reflexivity. Qed.
Theorem fn_category_associativity : forall (A B C D : Type) (f : Fn C D) (g : Fn B C) (h : Fn A B),
compose f (compose g h) = compose (compose f g) h.
Proof. intros. simpl. reflexivity. Qed.
Instance fnCorrectCategory : CorrectCategory Fn fnCategory :=
{
category_left_identity := fn_category_left_identity;
category_right_identity := fn_category_right_identity;
category_associativity := fn_category_associativity;
}.
Definition kleisli (F : Type -> Type) (A B : Type) : Type := A -> F B.
(* Scala:
type Kleisli[F[_], A, B] = A => F[B]
// or as a proper type not just an alias(cats):
case class Kleisli[F[_], A, B](run: A => F[B])
*)
(* Kleisli is only a category if the F parameter is a Monad
so we need to defines Monads along with their laws *)
Class Monad (M : Type -> Type) : Type :=
{
pure : forall {A : Type}, A -> M A;
bind : forall {A B : Type}, M A -> (A -> M B) -> M B;
}.
Class CorrectMonad (M : Type -> Type) `(E : Monad M) :=
{
monad_left_identity :
forall (A B : Type)
(f : A -> M B)
{a : A},
bind (pure a) f = f a;
monad_right_identity :
forall {A : Type}
{m : M A},
bind m pure = m;
monad_associativity :
forall {A B C : Type},
forall {f : A -> M B}
{g : B -> M C}
{m : M A},
bind (bind m f) g = bind m (fun (a : A) => bind (f a) g);
}.
(* Detour defining a Monad instance for Option and showing it's correctness *)
Instance optionMonad : Monad option :=
{
pure A x := Some x;
bind A B ma f :=
match ma with
| None => None
| Some a => f a
end;
}.
Theorem option_monad_left_identity : forall (A B : Type) (f : A -> option B) (a : A), bind (pure a) f = f a.
Proof.
intros.
simpl.
reflexivity.
Qed.
Theorem option_monad_right_identity : forall (A : Type) (m : option A), bind m pure = m.
Proof.
intros.
destruct m.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.
Theorem option_monad_associativity : forall (A B C : Type) (f : A -> option B) (g : B -> option C)
(m : option A), bind (bind m f) g = bind m (fun a : A => bind (f a) g).
Proof.
intros.
destruct m.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.
Instance correctOptionMonad : CorrectMonad option optionMonad :=
{
monad_left_identity := option_monad_left_identity;
monad_right_identity := option_monad_right_identity;
monad_associativity := option_monad_associativity;
}.
(* Finally back to Kleisli *)
Instance kleisliCategory (M : Type -> Type) `(Monad M) : Category (kleisli M) :=
{
id A := pure;
compose A B C f g a := bind (g a) f;
}.
(* Scala:
implicit def kleisliCategory[F[_]](implicit M: Monad[F]): Category[Kleisli[F, ?, ?]] = new Category[Kleisli[F, ?, ?]] {
def id[A]: Kleisli[F, A, A] = Kleisli(a => M.pure(a))
def compose[A, B, C](f: Kleisli[F, B, C], g: Kleisli[F, A, B]): Kleisli[F, A, C] = {
Kleisli((a: A) => M.bind(g.run(a))(f.run))
}
}
*)
Theorem kleisli_option_category_left_identity : forall (A B : Type) (f : kleisli option A B),
compose f id = f.
Proof.
intros.
simpl.
reflexivity.
Qed.
Axiom functional_extensionality : forall {X Y : Type} {f g : X -> Y},
(forall (x : X), f x = g x) -> f = g.
Theorem kleisli_option_category_right_identity : forall (A B : Type) (f : kleisli option A B),
compose id f = f.
Proof.
intros.
simpl.
apply functional_extensionality.
intros.
destruct (f x); reflexivity.
Qed.
Theorem kleisli_option_category_associativity : forall (A B C D : Type) (f : kleisli option C D) (g : kleisli option B C)
(h : kleisli option A B),
compose f (compose g h) = compose (compose f g) h.
Proof.
intros.
simpl.
apply functional_extensionality.
intros x.
destruct (h x); reflexivity.
Qed.
Instance kleisliOptionCorrectCategory : CorrectCategory (kleisli option) (kleisliCategory option optionMonad) :=
{
category_left_identity := kleisli_option_category_left_identity;
category_right_identity := kleisli_option_category_right_identity;
category_associativity := kleisli_option_category_associativity;
}.
End Categories.
Module Algebra.
Inductive either (A B : Type) : Type :=
| Left (a : A)
| Right (b : B).
Arguments Left {A} {B} _.
Arguments Right {A} {B} _.
Definition prod_to_sum {A B C : Type} (p : A * either B C) : either (A * B) (A * C) :=
match p with
| (a, e) =>
match e with
| Left b => Left (a, b)
| Right c => Right (a, c)
end
end.
Definition sum_to_prod {A B C : Type} (e : either (A * B) (A * C)) : A * either B C :=
match e with
| Left (a, b) => (a, Left b)
| Right (a, c) => (a, Right c)
end.
Theorem prod_sum_iso_1 : forall (A B C : Type) (p : A * either B C),
sum_to_prod (prod_to_sum p) = p.
Proof.
Admitted.
Theorem prod_sum_iso_2 : forall (A B C : Type) (e : either (A * B) (A * C)),
prod_to_sum (sum_to_prod e) = e.
Proof.
Admitted.
Definition pair_to_either {A : Type} (p : bool * A) : either A A :=
match p with
| (true, a) => Right a
| (false, a) => Left a
end.
Definition either_to_pair {A : Type} (e : either A A) : bool * A :=
match e with
| Right a => (true, a)
| Left a => (false, a)
end.
Theorem pair_either_iso_1 : forall (A : Type) (p : bool * A),
either_to_pair (pair_to_either p) = p.
Proof.
Admitted.
Theorem pair_either_iso_2 : forall (A : Type) (e : either A A),
pair_to_either (either_to_pair e) = e.
Proof.
Admitted.
Inductive unit := Unit.
Definition bool_to_either (b : bool) : either unit unit :=
match b with
| true => Right Unit
| false => Left Unit
end.
Definition either_to_bool (e : either unit unit) : bool :=
match e with
| Right _ => true
| Left _ => false
end.
Theorem bool_iso_either_1 : forall (b : bool),
either_to_bool (bool_to_either b) = b.
Proof.
Admitted.
Theorem bool_iso_either_2 : forall (e : either unit unit),
bool_to_either (either_to_bool e) = e.
Proof.
Admitted.
End Algebra.
(* NOTES:
- Software foundations book: https://softwarefoundations.cis.upenn.edu/lf-current/index.html
- Scalafiddle with full code: https://scalafiddle.io/sf/7Zt8qR5/1
- What Does It Mean to Be a Number? (Peano numbers): https://www.youtube.com/watch?v=3gBoP8jZ1Is
*)
Module Algebra.
Inductive either (A B : Type) : Type :=
| Left (a : A)
| Right (b : B).
Arguments Left {A} {B} _.
Arguments Right {A} {B} _.
Definition prod_to_sum {A B C : Type} (p : A * either B C) : either (A * B) (A * C) :=
match p with
| (a, e) =>
match e with
| Left b => Left (a, b)
| Right c => Right (a, c)
end
end.
Definition sum_to_prod {A B C : Type} (e : either (A * B) (A * C)) : A * either B C :=
match e with
| Left (a, b) => (a, Left b)
| Right (a, c) => (a, Right c)
end.
Theorem prod_sum_iso_1 : forall (A B C : Type) (p : A * either B C),
sum_to_prod (prod_to_sum p) = p.
Proof.
intros.
destruct p.
destruct e.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.
Theorem prod_sum_iso_2 : forall (A B C : Type) (e : either (A * B) (A * C)),
prod_to_sum (sum_to_prod e) = e.
Proof.
intros.
destruct e.
- destruct a. simpl. reflexivity.
- destruct b. simpl. reflexivity.
Qed.
Definition pair_to_either {A : Type} (p : bool * A) : either A A :=
match p with
| (true, a) => Right a
| (false, a) => Left a
end.
Definition either_to_pair {A : Type} (e : either A A) : bool * A :=
match e with
| Right a => (true, a)
| Left a => (false, a)
end.
Theorem pair_either_iso_1 : forall (A : Type) (p : bool * A),
either_to_pair (pair_to_either p) = p.
Proof.
intros.
destruct p.
simpl.
destruct b.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.
Theorem pair_either_iso_2 : forall (A : Type) (e : either A A),
pair_to_either (either_to_pair e) = e.
Proof.
intros.
destruct e; simpl; reflexivity.
Qed.
Inductive unit := Unit.
Definition bool_to_either (b : bool) : either unit unit :=
match b with
| true => Right Unit
| false => Left Unit
end.
Definition either_to_bool (e : either unit unit) : bool :=
match e with
| Right _ => true
| Left _ => false
end.
Theorem bool_iso_either_1 : forall (b : bool),
either_to_bool (bool_to_either b) = b.
Proof.
intros.
destruct b; simpl; reflexivity.
Qed.
Theorem bool_iso_either_2 : forall (e : either unit unit),
bool_to_either (either_to_bool e) = e.
Proof.
intros.
destruct e.
- destruct a. simpl. reflexivity.
- destruct b. simpl. reflexivity.
Qed.
End Algebra.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment