Created
January 13, 2014 02:26
-
-
Save ericminikel/8393801 to your computer and use it in GitHub Desktop.
Model the relationship between prion inoculum titer and incubation time
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Eric Minikel | |
# 2014-01-12 | |
# explore relationship between inoculated dose and incubation time | |
# this is all the code from this post: | |
# http://www.cureffi.org/2014/01/12/prion-kinetic-models-relationship-inoculum-titer-incubation-time/ | |
logdose = runif(n=100,min=0,max=10) # simulate 100 different experiments with diff titers | |
days = 10^( (logdose-26.66)/(-12.99) ) + 40 + rnorm(n=100,m=0,s=2) # apply Prusiner's model | |
plot(logdose,days,xlab="log10(LD50 units)",ylab="days to illness",pch=19, | |
main="incubation time interval bioassay\nPrusiner 1982b - Sc237 in hamsters", | |
sub="simulated data") | |
onset_dpi_Sc237 = function(titer) { | |
dpi_min = 40 | |
return ( dpi_min + 10**((1/12.99)*(26.66-log10(titer))) ) | |
} | |
# RML based on Bueler 1993 Table 1 | |
source_titer = (1e7)*10 | |
onset_dpi = c(137,151,157,160,183,201) # Table 1 "inoculum" column, "disease" row | |
dilutions = 10^-(1:6) | |
titers = source_titer * dilutions | |
plot(titers,onset_dpi,log='x',pch=19,cex.main=.8, | |
main='Inoculated titer vs. incubation time in RML-infected wt mice\nBueler 1993 Table 1') | |
logtiter = log10(titers) | |
m = lm(logtiter ~ onset_dpi) | |
summary(m) | |
#Coefficients: | |
# Estimate Std. Error t value Pr(>|t|) | |
#(Intercept) 17.34296 1.73838 9.977 0.000567 *** | |
#onset_dpi -0.07791 0.01046 -7.449 0.001735 ** | |
#Multiple R-squared: 0.9328, Adjusted R-squared: 0.9159 | |
m = lm(logtiter ~ log10(onset_dpi)) | |
summary(m) | |
m = lm(logtiter ~ log10(onset_dpi - 40)) | |
summary(m) # adj R^2 = .9404 | |
# so we can indeed do better with a log-log model | |
# can we do even better with some constant | |
find_best_adjustment = function(onset_dpi, titers) { | |
# try every possible "adjustment" up to the lowest incubation time observed | |
days_to_test = 1:(min(onset_dpi)-1) | |
rsq_vals = numeric(length(days_to_test)) | |
for (dpi_adjustment in days_to_test) { | |
log_adjusted_dpi = log10(onset_dpi - dpi_adjustment) | |
m = lm(logtiter ~ log_adjusted_dpi) | |
rsq_vals[dpi_adjustment] = summary(m)$adj.r.squared | |
} | |
# figure out which model had the highest R^2 | |
return ( which(rsq_vals == max(rsq_vals)) ) | |
} | |
find_best_adjustment(onset_dpi, titers) | |
# 100 | |
dpi_adjustment = 100 | |
log_adjusted_dpi = log10(onset_dpi - dpi_adjustment) | |
m = lm(logtiter ~ log_adjusted_dpi) | |
summary(m) | |
#Coefficients: | |
# Estimate Std. Error t value Pr(>|t|) | |
#(Intercept) 25.670 2.185 11.75 0.000300 *** | |
#log_adjusted_dpi -11.834 1.218 -9.72 0.000627 *** | |
#Multiple R-squared: 0.9594, Adjusted R-squared: 0.9492 | |
# model: estimated_titer = 10^(25.670 - 11.834*log10(onset_dpi - 100)) | |
# rearranging, predicted_onset = 10^((log10(titer) - 25.670) / (-11.834)) + 100 | |
predicted_onset = function(titer) { | |
return ( 10^((log10(titer) - 25.670) / (-11.834)) + 100 ) | |
} | |
plot(titers,onset_dpi,log='x',pch=19,cex.main=.8, | |
main='Incubation time bioassay model for RML in mice\nBased on Bueler 1993 Table 1 data', | |
sub='model: predicted_onset = 10^((log10(titer) - 25.670) / (-11.834)) + 100') | |
points(titers, predicted_onset(titers), type='l', col='violet') | |
# the log-log relationship is irreconcilable with the log-linear relationship predicted by | |
# the exponential model | |
tga20_onset = c(69,69,87,111) # Fischer 1996 Table 2 | |
source_titer = (10^7)*10 | |
dilutions = 10^c(-1,-2,-4,-6) | |
titers = dilutions*source_titer | |
logtiter = log10(titers) | |
m = lm(logtiter ~ tga20_onset) | |
summary(m) # .9245 | |
find_best_adjustment(tga20_onset, titers) | |
# 46 | |
m = lm(logtiter ~ log10(tga20_onset - 46)) | |
summary(m) # .9492 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment