Last active
February 19, 2023 23:21
-
-
Save erikgregorywebb/fc0a7c38b4cd4f16c3bf6afe786ffa46 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from selenium import webdriver | |
from selenium.webdriver.common.keys import Keys | |
import time | |
import pandas as pd | |
def getListingLinks(link): | |
# Open the driver | |
driver = webdriver.Chrome(executable_path="/Users/erikgregorywebb/Downloads/chromedriver 2") | |
driver.get(link) | |
# Save the links | |
listing_links = [] | |
links = driver.find_elements_by_css_selector('.listing-item-link') | |
for link in links: | |
listing_links.append(str(link.get_attribute('href'))) | |
driver.close() | |
return listing_links | |
def getListingContent(listing_link): | |
# Open the driver | |
driver = webdriver.Chrome(executable_path="/Users/erikgregorywebb/Downloads/chromedriver 2") | |
driver.get(listing_link) | |
# Collect listing informtion | |
try: | |
title = driver.find_element_by_css_selector('.listingDetails-title') | |
location = driver.find_element_by_css_selector('.listingDetails-location') | |
price = driver.find_element_by_css_selector('.listingDetails-price') | |
views = driver.find_element_by_css_selector('.viewsDesktop-viewsNumber') | |
favorites = driver.find_element_by_css_selector('.viewsDesktop-favoritedNumber') | |
description = driver.find_element_by_css_selector('.listingDescription-text') | |
name = driver.find_element_by_css_selector('.listingContactSeller-firstName-value') | |
# Compile into list | |
listing = [title.text, location.text, price.text, views.text, favorites.text, description.text, name.text, listing_link] | |
driver.close() | |
return listing | |
except: | |
print("An error occured.") | |
driver.close() | |
def getListings(url): | |
links = getListingLinks(url) | |
listings = [] | |
# Loop over each listing link | |
for i in range(0, 10): | |
time.sleep(3) | |
try: | |
listing = getListingContent(links[i]) | |
listings.append(listing) | |
except: | |
print("An error occured:", links[i]) | |
# Create DataFrame, clean variables | |
df = pd.DataFrame(listings, columns = ['title', 'location', 'price', 'views', 'favorites', 'description', 'name', 'link']) | |
return df | |
def cleanLlistings(df): | |
# Split the location variable into location and days_online | |
df['location'], df['days_online'] = df['location'].str.split('|', 1).str | |
# Remove the dollar sign in price | |
df['price'] = df['price'].str.replace('$', '') | |
df['price'] = df['price'].str.replace(',', '') | |
# Convert from string to numeric | |
df['views'] = pd.to_numeric(df['views']) | |
df['favorites'] = pd.to_numeric(df['favorites']) | |
return df | |
def main(url): | |
start_time = time.time() | |
# Process | |
raw_df = getListings(url) | |
df = cleanLlistings(raw_df) | |
# Export | |
df.to_csv("/Users/erikgregorywebb/Documents/Python/ksl-scrapper/listings.csv", sep = ',') | |
print("--- %s seconds ---" % round(time.time() - start_time, 2)) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment