Skip to content

Instantly share code, notes, and snippets.

@eternnoir
Created October 5, 2018 02:40
Show Gist options
  • Save eternnoir/26c09c6770924563680992b63195e298 to your computer and use it in GitHub Desktop.
Save eternnoir/26c09c6770924563680992b63195e298 to your computer and use it in GitHub Desktop.
pragma solidity ^0.4.24;
// * dice2.win - fair games that pay Ether. Version 5.
//
// * Ethereum smart contract, deployed at 0xD1CEeeeee83F8bCF3BEDad437202b6154E9F5405.
//
// * Uses hybrid commit-reveal + block hash random number generation that is immune
// to tampering by players, house and miners. Apart from being fully transparent,
// this also allows arbitrarily high bets.
//
// * Refer to https://dice2.win/whitepaper.pdf for detailed description and proofs.
contract Dice2Win {
/// *** Constants section
// Each bet is deducted 1% in favour of the house, but no less than some minimum.
// The lower bound is dictated by gas costs of the settleBet transaction, providing
// headroom for up to 10 Gwei prices.
uint constant HOUSE_EDGE_PERCENT = 1;
uint constant HOUSE_EDGE_MINIMUM_AMOUNT = 0.0003 ether;
// Bets lower than this amount do not participate in jackpot rolls (and are
// not deducted JACKPOT_FEE).
uint constant MIN_JACKPOT_BET = 0.1 ether;
// Chance to win jackpot (currently 0.1%) and fee deducted into jackpot fund.
uint constant JACKPOT_MODULO = 1000;
uint constant JACKPOT_FEE = 0.001 ether;
// There is minimum and maximum bets.
uint constant MIN_BET = 0.01 ether;
uint constant MAX_AMOUNT = 300000 ether;
// Modulo is a number of equiprobable outcomes in a game:
// - 2 for coin flip
// - 6 for dice
// - 6*6 = 36 for double dice
// - 100 for etheroll
// - 37 for roulette
// etc.
// It's called so because 256-bit entropy is treated like a huge integer and
// the remainder of its division by modulo is considered bet outcome.
uint constant MAX_MODULO = 100;
// For modulos below this threshold rolls are checked against a bit mask,
// thus allowing betting on any combination of outcomes. For example, given
// modulo 6 for dice, 101000 mask (base-2, big endian) means betting on
// 4 and 6; for games with modulos higher than threshold (Etheroll), a simple
// limit is used, allowing betting on any outcome in [0, N) range.
//
// The specific value is dictated by the fact that 256-bit intermediate
// multiplication result allows implementing population count efficiently
// for numbers that are up to 42 bits, and 40 is the highest multiple of
// eight below 42.
uint constant MAX_MASK_MODULO = 40;
// This is a check on bet mask overflow.
uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO;
// EVM BLOCKHASH opcode can query no further than 256 blocks into the
// past. Given that settleBet uses block hash of placeBet as one of
// complementary entropy sources, we cannot process bets older than this
// threshold. On rare occasions dice2.win croupier may fail to invoke
// settleBet in this timespan due to technical issues or extreme Ethereum
// congestion; such bets can be refunded via invoking refundBet.
uint constant BET_EXPIRATION_BLOCKS = 250;
// Some deliberately invalid address to initialize the secret signer with.
// Forces maintainers to invoke setSecretSigner before processing any bets.
address constant DUMMY_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
// Standard contract ownership transfer.
address public owner;
address private nextOwner;
// Adjustable max bet profit. Used to cap bets against dynamic odds.
uint public maxProfit;
// The address corresponding to a private key used to sign placeBet commits.
address public secretSigner;
// Accumulated jackpot fund.
uint128 public jackpotSize;
// Funds that are locked in potentially winning bets. Prevents contract from
// committing to bets it cannot pay out.
uint128 public lockedInBets;
// A structure representing a single bet.
struct Bet {
// Wager amount in wei.
uint amount;
// Modulo of a game.
uint8 modulo;
// Number of winning outcomes, used to compute winning payment (* modulo/rollUnder),
// and used instead of mask for games with modulo > MAX_MASK_MODULO.
uint8 rollUnder;
// Block number of placeBet tx.
uint40 placeBlockNumber;
// Bit mask representing winning bet outcomes (see MAX_MASK_MODULO comment).
uint40 mask;
// Address of a gambler, used to pay out winning bets.
address gambler;
}
// Mapping from commits to all currently active & processed bets.
mapping (uint => Bet) bets;
// Croupier account.
address public croupier;
// Events that are issued to make statistic recovery easier.
event FailedPayment(address indexed beneficiary, uint amount);
event Payment(address indexed beneficiary, uint amount);
event JackpotPayment(address indexed beneficiary, uint amount);
// This event is emitted in placeBet to record commit in the logs.
event Commit(uint commit);
// Constructor. Deliberately does not take any parameters.
constructor () public {
owner = msg.sender;
secretSigner = DUMMY_ADDRESS;
croupier = DUMMY_ADDRESS;
}
// Standard modifier on methods invokable only by contract owner.
modifier onlyOwner {
require (msg.sender == owner, "OnlyOwner methods called by non-owner.");
_;
}
// Standard modifier on methods invokable only by contract owner.
modifier onlyCroupier {
require (msg.sender == croupier, "OnlyCroupier methods called by non-croupier.");
_;
}
// Standard contract ownership transfer implementation,
function approveNextOwner(address _nextOwner) external onlyOwner {
require (_nextOwner != owner, "Cannot approve current owner.");
nextOwner = _nextOwner;
}
function acceptNextOwner() external {
require (msg.sender == nextOwner, "Can only accept preapproved new owner.");
owner = nextOwner;
}
// Fallback function deliberately left empty. It's primary use case
// is to top up the bank roll.
function () public payable {
}
// See comment for "secretSigner" variable.
function setSecretSigner(address newSecretSigner) external onlyOwner {
secretSigner = newSecretSigner;
}
// Change the croupier address.
function setCroupier(address newCroupier) external onlyOwner {
croupier = newCroupier;
}
// Change max bet reward. Setting this to zero effectively disables betting.
function setMaxProfit(uint _maxProfit) public onlyOwner {
require (_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number.");
maxProfit = _maxProfit;
}
// This function is used to bump up the jackpot fund. Cannot be used to lower it.
function increaseJackpot(uint increaseAmount) external onlyOwner {
require (increaseAmount <= address(this).balance, "Increase amount larger than balance.");
require (jackpotSize + lockedInBets + increaseAmount <= address(this).balance, "Not enough funds.");
jackpotSize += uint128(increaseAmount);
}
// Funds withdrawal to cover costs of dice2.win operation.
function withdrawFunds(address beneficiary, uint withdrawAmount) external onlyOwner {
require (withdrawAmount <= address(this).balance, "Increase amount larger than balance.");
require (jackpotSize + lockedInBets + withdrawAmount <= address(this).balance, "Not enough funds.");
sendFunds(beneficiary, withdrawAmount, withdrawAmount);
}
// Contract may be destroyed only when there are no ongoing bets,
// either settled or refunded. All funds are transferred to contract owner.
function kill() external onlyOwner {
require (lockedInBets == 0, "All bets should be processed (settled or refunded) before self-destruct.");
selfdestruct(owner);
}
/// *** Betting logic
// Bet states:
// amount == 0 && gambler == 0 - 'clean' (can place a bet)
// amount != 0 && gambler != 0 - 'active' (can be settled or refunded)
// amount == 0 && gambler != 0 - 'processed' (can clean storage)
//
// NOTE: Storage cleaning is not implemented in this contract version; it will be added
// with the next upgrade to prevent polluting Ethereum state with expired bets.
// Bet placing transaction - issued by the player.
// betMask - bet outcomes bit mask for modulo <= MAX_MASK_MODULO,
// [0, betMask) for larger modulos.
// modulo - game modulo.
// commitLastBlock - number of the maximum block where "commit" is still considered valid.
// commit - Keccak256 hash of some secret "reveal" random number, to be supplied
// by the dice2.win croupier bot in the settleBet transaction. Supplying
// "commit" ensures that "reveal" cannot be changed behind the scenes
// after placeBet have been mined.
// r, s - components of ECDSA signature of (commitLastBlock, commit). v is
// guaranteed to always equal 27.
//
// Commit, being essentially random 256-bit number, is used as a unique bet identifier in
// the 'bets' mapping.
//
// Commits are signed with a block limit to ensure that they are used at most once - otherwise
// it would be possible for a miner to place a bet with a known commit/reveal pair and tamper
// with the blockhash. Croupier guarantees that commitLastBlock will always be not greater than
// placeBet block number plus BET_EXPIRATION_BLOCKS. See whitepaper for details.
function placeBet(uint betMask, uint modulo, uint commitLastBlock, uint commit, bytes32 r, bytes32 s) external payable {
// Check that the bet is in 'clean' state.
Bet storage bet = bets[commit];
require (bet.gambler == address(0), "Bet should be in a 'clean' state.");
// Validate input data ranges.
uint amount = msg.value;
require (modulo > 1 && modulo <= MAX_MODULO, "Modulo should be within range.");
require (amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range.");
require (betMask > 0 && betMask < MAX_BET_MASK, "Mask should be within range.");
// Check that commit is valid - it has not expired and its signature is valid.
require (block.number <= commitLastBlock, "Commit has expired.");
bytes32 signatureHash = keccak256(abi.encodePacked(uint40(commitLastBlock), commit));
require (secretSigner == ecrecover(signatureHash, 27, r, s), "ECDSA signature is not valid.");
uint rollUnder;
uint mask;
if (modulo <= MAX_MASK_MODULO) {
// Small modulo games specify bet outcomes via bit mask.
// rollUnder is a number of 1 bits in this mask (population count).
// This magic looking formula is an efficient way to compute population
// count on EVM for numbers below 2**40. For detailed proof consult
// the dice2.win whitepaper.
rollUnder = ((betMask * POPCNT_MULT) & POPCNT_MASK) % POPCNT_MODULO;
mask = betMask;
} else {
// Larger modulos specify the right edge of half-open interval of
// winning bet outcomes.
require (betMask > 0 && betMask <= modulo, "High modulo range, betMask larger than modulo.");
rollUnder = betMask;
}
// Winning amount and jackpot increase.
uint possibleWinAmount;
uint jackpotFee;
(possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder);
// Enforce max profit limit.
require (possibleWinAmount <= amount + maxProfit, "maxProfit limit violation.");
// Lock funds.
lockedInBets += uint128(possibleWinAmount);
jackpotSize += uint128(jackpotFee);
// Check whether contract has enough funds to process this bet.
require (jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet.");
// Record commit in logs.
emit Commit(commit);
// Store bet parameters on blockchain.
bet.amount = amount;
bet.modulo = uint8(modulo);
bet.rollUnder = uint8(rollUnder);
bet.placeBlockNumber = uint40(block.number);
bet.mask = uint40(mask);
bet.gambler = msg.sender;
}
// This is the method used to settle 99% of bets. To process a bet with a specific
// "commit", settleBet should supply a "reveal" number that would Keccak256-hash to
// "commit". "blockHash" is the block hash of placeBet block as seen by croupier; it
// is additionally asserted to prevent changing the bet outcomes on Ethereum reorgs.
function settleBet(uint reveal, bytes32 blockHash) external onlyCroupier {
uint commit = uint(keccak256(abi.encodePacked(reveal)));
Bet storage bet = bets[commit];
uint placeBlockNumber = bet.placeBlockNumber;
// Check that bet has not expired yet (see comment to BET_EXPIRATION_BLOCKS).
require (block.number > placeBlockNumber, "settleBet in the same block as placeBet, or before.");
require (block.number <= placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM.");
require (blockhash(placeBlockNumber) == blockHash);
// Settle bet using reveal and blockHash as entropy sources.
settleBetCommon(bet, reveal, blockHash);
}
// This method is used to settle a bet that was mined into an uncle block. At this
// point the player was shown some bet outcome, but the blockhash at placeBet height
// is different because of Ethereum chain reorg. We supply a full merkle proof of the
// placeBet transaction receipt to provide untamperable evidence that uncle block hash
// indeed was present on-chain at some point.
function settleBetUncleMerkleProof(uint reveal, uint40 canonicalBlockNumber) external onlyCroupier {
// "commit" for bet settlement can only be obtained by hashing a "reveal".
uint commit = uint(keccak256(abi.encodePacked(reveal)));
Bet storage bet = bets[commit];
// Check that canonical block hash can still be verified.
require (block.number <= canonicalBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM.");
// Verify placeBet receipt.
requireCorrectReceipt(4 + 32 + 32 + 4);
// Reconstruct canonical & uncle block hashes from a receipt merkle proof, verify them.
bytes32 canonicalHash;
bytes32 uncleHash;
(canonicalHash, uncleHash) = verifyMerkleProof(commit, 4 + 32 + 32);
require (blockhash(canonicalBlockNumber) == canonicalHash);
// Settle bet using reveal and uncleHash as entropy sources.
settleBetCommon(bet, reveal, uncleHash);
}
// Common settlement code for settleBet & settleBetUncleMerkleProof.
function settleBetCommon(Bet storage bet, uint reveal, bytes32 entropyBlockHash) private {
// Fetch bet parameters into local variables (to save gas).
uint amount = bet.amount;
uint modulo = bet.modulo;
uint rollUnder = bet.rollUnder;
address gambler = bet.gambler;
// Check that bet is in 'active' state.
require (amount != 0, "Bet should be in an 'active' state");
// Move bet into 'processed' state already.
bet.amount = 0;
// The RNG - combine "reveal" and blockhash of placeBet using Keccak256. Miners
// are not aware of "reveal" and cannot deduce it from "commit" (as Keccak256
// preimage is intractable), and house is unable to alter the "reveal" after
// placeBet have been mined (as Keccak256 collision finding is also intractable).
bytes32 entropy = keccak256(abi.encodePacked(reveal, entropyBlockHash));
// Do a roll by taking a modulo of entropy. Compute winning amount.
uint dice = uint(entropy) % modulo;
uint diceWinAmount;
uint _jackpotFee;
(diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder);
uint diceWin = 0;
uint jackpotWin = 0;
// Determine dice outcome.
if (modulo <= MAX_MASK_MODULO) {
// For small modulo games, check the outcome against a bit mask.
if ((2 ** dice) & bet.mask != 0) {
diceWin = diceWinAmount;
}
} else {
// For larger modulos, check inclusion into half-open interval.
if (dice < rollUnder) {
diceWin = diceWinAmount;
}
}
// Unlock the bet amount, regardless of the outcome.
lockedInBets -= uint128(diceWinAmount);
// Roll for a jackpot (if eligible).
if (amount >= MIN_JACKPOT_BET) {
// The second modulo, statistically independent from the "main" dice roll.
// Effectively you are playing two games at once!
uint jackpotRng = (uint(entropy) / modulo) % JACKPOT_MODULO;
// Bingo!
if (jackpotRng == 0) {
jackpotWin = jackpotSize;
jackpotSize = 0;
}
}
// Log jackpot win.
if (jackpotWin > 0) {
emit JackpotPayment(gambler, jackpotWin);
}
// Send the funds to gambler.
sendFunds(gambler, diceWin + jackpotWin == 0 ? 1 wei : diceWin + jackpotWin, diceWin);
}
// Refund transaction - return the bet amount of a roll that was not processed in a
// due timeframe. Processing such blocks is not possible due to EVM limitations (see
// BET_EXPIRATION_BLOCKS comment above for details). In case you ever find yourself
// in a situation like this, just contact the dice2.win support, however nothing
// precludes you from invoking this method yourself.
function refundBet(uint commit) external {
// Check that bet is in 'active' state.
Bet storage bet = bets[commit];
uint amount = bet.amount;
require (amount != 0, "Bet should be in an 'active' state");
// Check that bet has already expired.
require (block.number > bet.placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM.");
// Move bet into 'processed' state, release funds.
bet.amount = 0;
uint diceWinAmount;
uint jackpotFee;
(diceWinAmount, jackpotFee) = getDiceWinAmount(amount, bet.modulo, bet.rollUnder);
lockedInBets -= uint128(diceWinAmount);
jackpotSize -= uint128(jackpotFee);
// Send the refund.
sendFunds(bet.gambler, amount, amount);
}
// Get the expected win amount after house edge is subtracted.
function getDiceWinAmount(uint amount, uint modulo, uint rollUnder) private pure returns (uint winAmount, uint jackpotFee) {
require (0 < rollUnder && rollUnder <= modulo, "Win probability out of range.");
jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0;
uint houseEdge = amount * HOUSE_EDGE_PERCENT / 100;
if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) {
houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT;
}
require (houseEdge + jackpotFee <= amount, "Bet doesn't even cover house edge.");
winAmount = (amount - houseEdge - jackpotFee) * modulo / rollUnder;
}
// Helper routine to process the payment.
function sendFunds(address beneficiary, uint amount, uint successLogAmount) private {
if (beneficiary.send(amount)) {
emit Payment(beneficiary, successLogAmount);
} else {
emit FailedPayment(beneficiary, amount);
}
}
// This are some constants making O(1) population count in placeBet possible.
// See whitepaper for intuition and proofs behind it.
uint constant POPCNT_MULT = 0x0000000000002000000000100000000008000000000400000000020000000001;
uint constant POPCNT_MASK = 0x0001041041041041041041041041041041041041041041041041041041041041;
uint constant POPCNT_MODULO = 0x3F;
// *** Merkle proofs.
// This helpers are used to verify cryptographic proofs of placeBet inclusion into
// uncle blocks. They are used to prevent bet outcome changing on Ethereum reorgs without
// compromising the security of the smart contract. Proof data is appended to the input data
// in a simple prefix length format and does not adhere to the ABI.
// Invariants checked:
// - receipt trie entry contains a (1) successful transaction (2) directed at this smart
// contract (3) containing commit as a payload.
// - receipt trie entry is a part of a valid merkle proof of a block header
// - the block header is a part of uncle list of some block on canonical chain
// The implementation is optimized for gas cost and relies on the specifics of Ethereum internal data structures.
// Read the whitepaper for details.
// Helper to verify a full merkle proof starting from some seedHash (usually commit). "offset" is the location of the proof
// beginning in the calldata.
function verifyMerkleProof(uint seedHash, uint offset) pure private returns (bytes32 blockHash, bytes32 uncleHash) {
// (Safe) assumption - nobody will write into RAM during this method invocation.
uint scratchBuf1; assembly { scratchBuf1 := mload(0x40) }
uint uncleHeaderLength; uint blobLength; uint shift; uint hashSlot;
// Verify merkle proofs up to uncle block header. Calldata layout is:
// - 2 byte big-endian slice length
// - 2 byte big-endian offset to the beginning of previous slice hash within the current slice (should be zeroed)
// - followed by the current slice verbatim
for (;; offset += blobLength) {
assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) }
if (blobLength == 0) {
// Zero slice length marks the end of uncle proof.
break;
}
assembly { shift := and(calldataload(sub(offset, 28)), 0xffff) }
require (shift + 32 <= blobLength, "Shift bounds check.");
offset += 4;
assembly { hashSlot := calldataload(add(offset, shift)) }
require (hashSlot == 0, "Non-empty hash slot.");
assembly {
calldatacopy(scratchBuf1, offset, blobLength)
mstore(add(scratchBuf1, shift), seedHash)
seedHash := sha3(scratchBuf1, blobLength)
uncleHeaderLength := blobLength
}
}
// At this moment the uncle hash is known.
uncleHash = bytes32(seedHash);
// Construct the uncle list of a canonical block.
uint scratchBuf2 = scratchBuf1 + uncleHeaderLength;
uint unclesLength; assembly { unclesLength := and(calldataload(sub(offset, 28)), 0xffff) }
uint unclesShift; assembly { unclesShift := and(calldataload(sub(offset, 26)), 0xffff) }
require (unclesShift + uncleHeaderLength <= unclesLength, "Shift bounds check.");
offset += 6;
assembly { calldatacopy(scratchBuf2, offset, unclesLength) }
memcpy(scratchBuf2 + unclesShift, scratchBuf1, uncleHeaderLength);
assembly { seedHash := sha3(scratchBuf2, unclesLength) }
offset += unclesLength;
// Verify the canonical block header using the computed sha3Uncles.
assembly {
blobLength := and(calldataload(sub(offset, 30)), 0xffff)
shift := and(calldataload(sub(offset, 28)), 0xffff)
}
require (shift + 32 <= blobLength, "Shift bounds check.");
offset += 4;
assembly { hashSlot := calldataload(add(offset, shift)) }
require (hashSlot == 0, "Non-empty hash slot.");
assembly {
calldatacopy(scratchBuf1, offset, blobLength)
mstore(add(scratchBuf1, shift), seedHash)
// At this moment the canonical block hash is known.
blockHash := sha3(scratchBuf1, blobLength)
}
}
// Helper to check the placeBet receipt. "offset" is the location of the proof beginning in the calldata.
// RLP layout: [triePath, str([status, cumGasUsed, bloomFilter, [[address, [topics], data]])]
function requireCorrectReceipt(uint offset) view private {
uint leafHeaderByte; assembly { leafHeaderByte := byte(0, calldataload(offset)) }
require (leafHeaderByte >= 0xf7, "Receipt leaf longer than 55 bytes.");
offset += leafHeaderByte - 0xf6;
uint pathHeaderByte; assembly { pathHeaderByte := byte(0, calldataload(offset)) }
if (pathHeaderByte <= 0x7f) {
offset += 1;
} else {
require (pathHeaderByte >= 0x80 && pathHeaderByte <= 0xb7, "Path is an RLP string.");
offset += pathHeaderByte - 0x7f;
}
uint receiptStringHeaderByte; assembly { receiptStringHeaderByte := byte(0, calldataload(offset)) }
require (receiptStringHeaderByte == 0xb9, "Receipt string is always at least 256 bytes long, but less than 64k.");
offset += 3;
uint receiptHeaderByte; assembly { receiptHeaderByte := byte(0, calldataload(offset)) }
require (receiptHeaderByte == 0xf9, "Receipt is always at least 256 bytes long, but less than 64k.");
offset += 3;
uint statusByte; assembly { statusByte := byte(0, calldataload(offset)) }
require (statusByte == 0x1, "Status should be success.");
offset += 1;
uint cumGasHeaderByte; assembly { cumGasHeaderByte := byte(0, calldataload(offset)) }
if (cumGasHeaderByte <= 0x7f) {
offset += 1;
} else {
require (cumGasHeaderByte >= 0x80 && cumGasHeaderByte <= 0xb7, "Cumulative gas is an RLP string.");
offset += cumGasHeaderByte - 0x7f;
}
uint bloomHeaderByte; assembly { bloomHeaderByte := byte(0, calldataload(offset)) }
require (bloomHeaderByte == 0xb9, "Bloom filter is always 256 bytes long.");
offset += 256 + 3;
uint logsListHeaderByte; assembly { logsListHeaderByte := byte(0, calldataload(offset)) }
require (logsListHeaderByte == 0xf8, "Logs list is less than 256 bytes long.");
offset += 2;
uint logEntryHeaderByte; assembly { logEntryHeaderByte := byte(0, calldataload(offset)) }
require (logEntryHeaderByte == 0xf8, "Log entry is less than 256 bytes long.");
offset += 2;
uint addressHeaderByte; assembly { addressHeaderByte := byte(0, calldataload(offset)) }
require (addressHeaderByte == 0x94, "Address is 20 bytes long.");
uint logAddress; assembly { logAddress := and(calldataload(sub(offset, 11)), 0xffffffffffffffffffffffffffffffffffffffff) }
require (logAddress == uint(address(this)));
}
// Memory copy.
function memcpy(uint dest, uint src, uint len) pure private {
// Full 32 byte words
for(; len >= 32; len -= 32) {
assembly { mstore(dest, mload(src)) }
dest += 32; src += 32;
}
// Remaining bytes
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment