Created
November 22, 2015 18:43
-
-
Save evanbiederstedt/092866cc951dd0d8e490 to your computer and use it in GitHub Desktop.
-2LogLF function with Planck map values
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The -2 log-likelihood | |
# | |
# -2lnL \propto m^T C^-1 m + ln det C + N ln (2pi) | |
# | |
# First term, m^T C^-1 m is the "model fit term" | |
# Second term, lndetC is the "complexity penalty" | |
# Third term, N ln 2pi, a constant | |
# | |
# m = tempval | |
# C = Sij + N_ij | |
tempp = patch # shape (768,) | |
# e.g. values: | |
# 72.88291049, 76.82649994, 11.31249934, -11.75291294, | |
# -23.46053075, 22.16308705, 21.45570391, -21.91874249, | |
# 62.40692039, 91.91584206 | |
noisepatch # corresponding noise values, shape (768,) | |
# e.g. values: | |
# 3.02168953, -12.46713406, 7.32537 , 1.7936974 , | |
# 2.54476212, -4.8399158 , 1.17796342, -4.80521029, | |
# -2.31289673, 5.95576501 | |
Npix2pi = (len(patch))*2*math.pi # LF constant | |
def LogLikehood_wNoise(param, sig): | |
# param is our parameter, C_3 | |
Sij = param[:, None, None] * correctmatrix[None, :, :] | |
#newSij = (1e12)*Sij # multiply S_ij by 1e12 | |
Nij = sig * id_mat[None, :, :] | |
#newNij = (1e12)*Nij | |
# Format 7/4pi * param * P_3(M) where param is the parameter we vary, C_l | |
# Sij.shape = (20, 3072, 3072) | |
Cij = Sij + Nij | |
#invCij = np.linalg.inv(Cij) | |
logdetC = np.linalg.slogdet(Cij) # returns sign and determinant; use logdetC[1] | |
# model_fit_terms = m^T C^-1 m | |
model_fit_terms = np.array([np.dot(tempp.T , np.linalg.solve(Cij[i], tempp) ) for i in range(Cij.shape[0]) ]) | |
return model_fit_terms + logdetC[1] + Npix2pi | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment