Skip to content

Instantly share code, notes, and snippets.

@evancasey
Last active March 27, 2023 13:57
Show Gist options
  • Save evancasey/eea749d7186e92670fca728ddb384212 to your computer and use it in GitHub Desktop.
Save evancasey/eea749d7186e92670fca728ddb384212 to your computer and use it in GitHub Desktop.
Hacky facer
from typing import *
import math
import functools
import torch
import torch.nn.functional as F
from ..util import download_jit
from ..transform import (get_crop_and_resize_matrix, get_face_align_matrix,
make_inverted_tanh_warp_grid, make_tanh_warp_grid)
from .base import FaceParser
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from collections import OrderedDict
import logging
import torch
import torch.nn.functional as F
from torch import nn
import torch.utils.checkpoint as checkpoint
import numpy as np
from timm.models.layers import trunc_normal_, DropPath
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes *
self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5
)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2]
* x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3,
stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2,
kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(
width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(
input_resolution // 32, embed_dim, heads, output_dim
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.BatchNorm2d, LayerNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.Linear, nn.Conv2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [
(self.conv1, self.bn1),
(self.conv2, self.bn2),
(self.conv3, self.bn3)
]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
return x
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
pdtype = x.dtype
x = x.float()
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x.to(pdtype) + self.bias
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, drop_path=0.):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def add_drop_path(self, drop_path):
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self,
width: int,
layers: int,
heads: int,
attn_mask: torch.Tensor = None,
use_checkpoint=True,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
):
super().__init__()
self.width = width
self.layers = layers
self.use_checkpoint = use_checkpoint
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)]
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(width, heads, attn_mask, drop_path=dpr[i])
for i in range(layers)
])
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x: torch.Tensor, return_all=False):
all_x = []
for i, blk in enumerate(self.resblocks):
if self.training and self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if return_all:
all_x.append(x)
if return_all:
return all_x
else:
return x
class VisualTransformer(nn.Module):
positional_embedding: nn.Parameter
def __init__(self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
pool_type: str = 'default',
skip_cls: bool = False,
drop_path_rate=0.,
**kwargs):
super().__init__()
self.pool_type = pool_type
self.skip_cls = skip_cls
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False
)
self.config = kwargs.get("config", None)
self.sequence_length = (input_resolution // patch_size) ** 2 + 1
self.conv_pool = None
if (self.pool_type == 'linear'):
if (not self.skip_cls):
self.conv_pool = nn.Conv1d(
width, width, self.sequence_length, stride=self.sequence_length, groups=width)
else:
self.conv_pool = nn.Conv1d(
width, width, self.sequence_length-1, stride=self.sequence_length, groups=width)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn(
self.sequence_length, width
)
)
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(
width, layers, heads, drop_path_rate=drop_path_rate)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
if self.config is not None and self.config.MIM.ENABLE:
logging.info("MIM ENABLED")
self.mim = True
self.lm_transformer = Transformer(
width, self.config.MIM.LAYERS, heads)
self.ln_lm = LayerNorm(width)
self.lm_head = nn.Linear(width, self.config.MIM.VOCAB_SIZE)
self.mask_token = nn.Parameter(scale * torch.randn(width))
else:
self.mim = False
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv1d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x: torch.Tensor, **kwargs):
if "bool_masked_pos" in kwargs:
return self.forward_mim(x, **kwargs)
x = self.conv1(x) # shape = [*, width, grid, grid]
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1],
dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
if (self.pool_type == 'average'):
if self.skip_cls:
x = x[:, 1:, :]
x = torch.mean(x, dim=1)
elif (self.pool_type == 'linear'):
if self.skip_cls:
x = x[:, 1:, :]
x = x.permute(0, 2, 1)
x = self.conv_pool(x)
x = x.permute(0, 2, 1).squeeze()
else:
x = x[:, 0, :]
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x
def forward_mim(self, x: torch.Tensor, bool_masked_pos, return_all_tokens=False, disable_vlc=False):
x = self.conv1(x) # shape = [*, width, grid, grid]
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
batch_size, seq_len, _ = x.size()
mask_token = self.mask_token.unsqueeze(
0).unsqueeze(0).expand(batch_size, seq_len, -1)
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
masked_x = x * (1 - w) + mask_token * w
if disable_vlc:
x = masked_x
masked_start = 0
else:
x = torch.cat([x, masked_x], 0)
masked_start = batch_size
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1],
dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
masked_x = x[:, masked_start:]
masked_x = self.lm_transformer(masked_x)
masked_x = masked_x.permute(1, 0, 2)
masked_x = masked_x[:, 1:]
masked_x = self.ln_lm(masked_x)
if not return_all_tokens:
masked_x = masked_x[bool_masked_pos]
logits = self.lm_head(masked_x)
assert self.pool_type == "default"
result = {"logits": logits}
if not disable_vlc:
x = x[0, :batch_size]
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
result["feature"] = x
return result
# def load_farl(model_type, model_file) -> VisualTransformer:
# checkpoint = torch.load(model_file, map_location='cpu')
# if model_type == "base":
# model = VisualTransformer(
# input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512)
# elif model_type == "large":
# model = VisualTransformer(
# input_resolution=224, patch_size=16, width=1024, layers=24, heads=16, output_dim=512)
# elif model_type == "huge":
# model = VisualTransformer(
# input_resolution=224, patch_size=14, width=1280, layers=32, heads=16, output_dim=512)
# else:
# raise
# model.transformer.use_checkpoint = True
# state_dict = {}
# for name, weight in checkpoint["state_dict"].items():
# if name.startswith("visual"):
# state_dict[name[7:]] = weight
# inco = model.load_state_dict(state_dict, strict=False)
# # print(inco.missing_keys)
# assert len(inco.missing_keys) == 0
# return model
def _make_fpns(vision_patch_size: int, output_channels: int):
if vision_patch_size in {16, 14}:
fpn1 = nn.Sequential(
nn.ConvTranspose2d(output_channels, output_channels,
kernel_size=2, stride=2),
nn.SyncBatchNorm(output_channels),
nn.GELU(),
nn.ConvTranspose2d(output_channels, output_channels, kernel_size=2, stride=2))
fpn2 = nn.ConvTranspose2d(
output_channels, output_channels, kernel_size=2, stride=2)
fpn3 = nn.Identity()
fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
return nn.ModuleList([fpn1, fpn2, fpn3, fpn4])
elif vision_patch_size == 8:
fpn1 = nn.Sequential(nn.ConvTranspose2d(
output_channels, output_channels, kernel_size=2, stride=2))
fpn2 = nn.Identity()
fpn3 = nn.MaxPool2d(kernel_size=2, stride=2)
fpn4 = nn.MaxPool2d(kernel_size=4, stride=4)
return nn.ModuleList([fpn1, fpn2, fpn3, fpn4])
else:
raise NotImplementedError()
def _resize_pe(pe: torch.Tensor, new_size: int, mode: str = 'bicubic', num_tokens: int = 1) -> torch.Tensor:
"""Resize positional embeddings.
Args:
pe (torch.Tensor): A tensor with shape (num_tokens + old_size ** 2, width). pe[0, :] is the CLS token.
Returns:
torch.Tensor: A tensor with shape (num_tokens + new_size **2, width).
"""
l, w = pe.shape
old_size = int(math.sqrt(l-num_tokens))
assert old_size ** 2 + num_tokens == l
return torch.cat([
pe[:num_tokens, :],
F.interpolate(pe[num_tokens:, :].reshape(1, old_size, old_size, w).permute(0, 3, 1, 2),
(new_size, new_size), mode=mode, align_corners=False).view(w, -1).t()], dim=0)
class FaRLVisualFeatures(nn.Module):
"""Extract features from FaRL visual encoder.
Args:
image (torch.Tensor): Float32 tensor with shape [b, 3, h, w],
normalized to [0, 1].
Returns:
List[torch.Tensor]: A list of features.
"""
image_mean: torch.Tensor
image_std: torch.Tensor
output_channels: int
num_outputs: int
def __init__(self, model_type: str,
model_path: str, output_indices: Optional[List[int]] = None,
forced_input_resolution: Optional[int] = None,
apply_fpn: bool = True, _ctx = None):
super().__init__()
# model_path = deal_with_remote_file(
# model_path, _ctx.copy2local, _ctx.blob_root)
self.visual = load_farl(model_type, model_path)
vision_patch_size = self.visual.conv1.weight.shape[-1]
self.input_resolution = self.visual.input_resolution
if forced_input_resolution is not None and \
self.input_resolution != forced_input_resolution:
# resizing the positonal embeddings
self.visual.positional_embedding = nn.Parameter(
_resize_pe(self.visual.positional_embedding,
forced_input_resolution//vision_patch_size))
self.input_resolution = forced_input_resolution
self.output_channels = self.visual.transformer.width
if output_indices is None:
output_indices = self.__class__.get_default_output_indices(
model_type)
self.output_indices = output_indices
self.num_outputs = len(output_indices)
self.register_buffer('image_mean', torch.tensor(
[0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1))
self.register_buffer('image_std', torch.tensor(
[0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1))
if apply_fpn:
self.fpns = _make_fpns(vision_patch_size, self.output_channels)
else:
self.fpns = None
@staticmethod
def get_output_channel(model_type):
if model_type == 'base':
return 768
if model_type == 'large':
return 1024
if model_type == 'huge':
return 1280
@staticmethod
def get_default_output_indices(model_type):
if model_type == 'base':
return [3, 5, 7, 11]
if model_type == 'large':
return [7, 11, 15, 23]
if model_type == 'huge':
return [8, 14, 20, 31]
def forward(self, image: torch.Tensor) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
# b x 3 x res x res
_, _, input_h, input_w = image.shape
if input_h != self.input_resolution or input_w != self.input_resolution:
image = F.interpolate(image, self.input_resolution,
mode='bilinear', align_corners=False)
image = (image - self.image_mean) / self.image_std
x = image.to(self.visual.conv1.weight.data)
x = self.visual.conv1(x) # shape = [*, width, grid, grid]
N, _, S, S = x.shape
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.visual.class_embedding.to(x.dtype) +
torch.zeros(x.shape[0], 1, x.shape[-1],
dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.visual.positional_embedding.to(x.dtype)
x = self.visual.ln_pre(x)
x = x.permute(1, 0, 2).contiguous() # NLD -> LND
features = []
cls_tokens = []
for blk in self.visual.transformer.resblocks:
x = blk(x) # [S ** 2 + 1, N, D]
# if idx in self.output_indices:
feature = x[1:, :, :].permute(
1, 2, 0).view(N, -1, S, S).contiguous().float()
features.append(feature)
cls_tokens.append(x[0, :, :])
features = [features[ind] for ind in self.output_indices]
cls_tokens = [cls_tokens[ind] for ind in self.output_indices]
if self.fpns is not None:
for i, fpn in enumerate(self.fpns):
features[i] = fpn(features[i])
return features, cls_tokens
pretrain_settings = {
'lapa/448': {
'url': [
'/home/ec2-user/facer/FaRL-Base-Patch16-LAIONFace20M-ep64.pth',
],
'matrix_src_tag': 'points',
'get_matrix_fn': functools.partial(get_face_align_matrix,
target_shape=(448, 448), target_face_scale=1.0),
'get_grid_fn': functools.partial(make_tanh_warp_grid,
warp_factor=0.8, warped_shape=(448, 448)),
'get_inv_grid_fn': functools.partial(make_inverted_tanh_warp_grid,
warp_factor=0.8, warped_shape=(448, 448)),
'label_names': ['background', 'face', 'rb', 'lb', 're',
'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
}
}
class MMSEG_UPerHead(nn.Module):
"""Wraps the UPerHead from mmseg for segmentation.
"""
def __init__(self, num_classes: int,
in_channels: list = [384, 384, 384, 384], channels: int = 512):
super().__init__()
from mmseg.models.decode_heads import UPerHead
self.head = UPerHead(
in_channels=in_channels,
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=channels,
dropout_ratio=0.1,
num_classes=num_classes,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
def forward(self, inputs):
return self.head(inputs)
class FaceParsingTransformer(nn.Module):
"""Face parsing transformer.
Args:
image (torch.Tensor): Float32 tensor with shape [b, 3, h, w], normalized to [0, 1].
Returns:
logits (torch.Tensor): Float32 tensor with shape [b, nclasses, out_size[0], out_size[1]]
aux_outputs (dict): Empty.
"""
def __init__(self, backbone: nn.Module, head: nn.Module, out_size: Tuple[int, int]):
super().__init__()
self.backbone = backbone
self.head = head
self.out_size = out_size
self.cuda().float()
def forward(self, image):
features, _ = self.backbone(image)
logits = self.head(features)
return F.interpolate(logits, size=self.out_size, mode='bilinear', align_corners=False), dict()
# return logits, dict()
def load_farl(model_type, model_file) -> VisualTransformer:
checkpoint = torch.load(model_file, map_location='cpu')
if model_type == "base":
model = VisualTransformer(
input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512)
elif model_type == "large":
model = VisualTransformer(
input_resolution=224, patch_size=16, width=1024, layers=24, heads=16, output_dim=512)
elif model_type == "huge":
model = VisualTransformer(
input_resolution=224, patch_size=14, width=1280, layers=32, heads=16, output_dim=512)
else:
raise
model.transformer.use_checkpoint = True
state_dict = {}
for name, weight in checkpoint["state_dict"].items():
if name.startswith("visual"):
state_dict[name[7:]] = weight
inco = model.load_state_dict(state_dict, strict=False)
# print(inco.missing_keys)
assert len(inco.missing_keys) == 0
return model
class FaRLFaceParser(FaceParser):
""" The face parsing models from [FaRL](https://github.com/FacePerceiver/FaRL).
Please consider citing
```bibtex
@article{zheng2021farl,
title={General Facial Representation Learning in a Visual-Linguistic Manner},
author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen,
Dongdong and Huang, Yangyu and Yuan, Lu and Chen,
Dong and Zeng, Ming and Wen, Fang},
journal={arXiv preprint arXiv:2112.03109},
year={2021}
}
```
"""
def __init__(self, conf_name: Optional[str] = None,
model_path: Optional[str] = None, device=None) -> None:
super().__init__()
if conf_name is None:
conf_name = 'lapa/448'
if model_path is None:
model_path = pretrain_settings[conf_name]['url'][0]
self.conf_name = conf_name
# self.net = download_jit(model_path, map_location=device)
backbone = FaRLVisualFeatures(
model_type='base',
model_path=model_path,
output_indices=None,
forced_input_resolution=224,
)
head = MMSEG_UPerHead(
in_channels=[FaRLVisualFeatures.get_output_channel('base')]*4,
channels=768,
num_classes=11,
)
self.net = FaceParsingTransformer(backbone, head, ((512, 512)))
self.eval()
def forward(self, images: torch.Tensor, data: Dict[str, Any]):
setting = pretrain_settings[self.conf_name]
images = images.float() / 255.0
_, _, h, w = images.shape
simages = images[data['image_ids']]
matrix = setting['get_matrix_fn'](data[setting['matrix_src_tag']])
grid = setting['get_grid_fn'](matrix=matrix, orig_shape=(h, w))
inv_grid = setting['get_inv_grid_fn'](matrix=matrix, orig_shape=(h, w))
w_images = F.grid_sample(
simages, grid, mode='bilinear', align_corners=False)
w_seg_logits, _ = self.net(w_images) # (b*n) x c x h x w
# = out['logits']
seg_logits = F.grid_sample(
w_seg_logits, inv_grid, mode='bilinear', align_corners=False)
data['seg'] = {'logits': seg_logits,
'label_names': setting['label_names']}
return data
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment