Skip to content

Instantly share code, notes, and snippets.

@ezyang
Created January 29, 2019 04:33
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save ezyang/bf9b6a5fa8827c52152858169bcb61b1 to your computer and use it in GitHub Desktop.
Save ezyang/bf9b6a5fa8827c52152858169bcb61b1 to your computer and use it in GitHub Desktop.
torch.pyi
# @generated from tools/autograd/templates/torch/__init__.pyi
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload
from torch._six import inf
import builtins
# These identifiers are reexported from other modules. These modules
# are not mypy-clean yet, so in order to use this stub file usefully
# from mypy you will need to specify --follow-imports=silent.
# Not all is lost: these imports still enable IDEs like PyCharm to offer
# autocomplete.
#
# Note: Why does the syntax here look so strange? Import visibility
# rules in stubs are different from normal Python files! You must use
# 'from ... import ... as ...' syntax to cause an identifier to be
# exposed (or use a wildcard); regular syntax is not exposed.
from .random import set_rng_state as set_rng_state, get_rng_state as get_rng_state, \
manual_seed as manual_seed, initial_seed as initial_seed
from ._tensor_str import set_printoptions as set_printoptions
from .functional import *
from .serialization import save as save, load as load
from .autograd import no_grad as no_grad, enable_grad as enable_grad, \
set_grad_enabled as set_grad_enabled
class dtype: ...
class layout: ...
strided : layout = ...
# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_int = builtins.int
_float = builtins.float
class device:
def __init__(self, device: Union[_int, str, None]=None) -> None: ...
class Generator: ...
class Size(tuple): ...
class Storage: ...
# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_dtype = dtype
_device = device
_size = Union[Size, List[_int], Tuple[_int, ...]]
# Meta-type for "numeric" things; matches our docs
Number = Union[builtins.int, builtins.float]
# TODO: One downside of doing it this way, is direct use of
# torch.tensor.Tensor doesn't get type annotations. Nobody
# should really do that, so maybe this is not so bad.
class Tensor:
dtype: _dtype = ...
shape: Size = ...
device: _device = ...
requires_grad: bool = ...
grad: Optional[Tensor] = ...
def __abs__(self) -> Tensor: ...
def __add__(self, other: Any) -> Tensor: ...
@overload
def __and__(self, other: Number) -> Tensor: ...
@overload
def __and__(self, other: Tensor) -> Tensor: ...
@overload
def __and__(self, other: Any) -> Tensor: ...
def __bool__(self) -> bool: ...
def __div__(self, other: Any) -> Tensor: ...
def __eq__(self, other: Any) -> Tensor: ... # type: ignore
def __float__(self) -> builtins.float: ...
def __ge__(self, other: Any) -> Tensor: ... # type: ignore
def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
def __gt__(self, other: Any) -> Tensor: ... # type: ignore
def __iadd__(self, other: Any) -> Tensor: ...
@overload
def __iand__(self, other: Number) -> Tensor: ...
@overload
def __iand__(self, other: Tensor) -> Tensor: ...
@overload
def __iand__(self, other: Any) -> Tensor: ...
def __idiv__(self, other: Any) -> Tensor: ...
@overload
def __ilshift__(self, other: Number) -> Tensor: ...
@overload
def __ilshift__(self, other: Tensor) -> Tensor: ...
@overload
def __ilshift__(self, other: Any) -> Tensor: ...
def __imul__(self, other: Any) -> Tensor: ...
def __index__(self) -> builtins.int: ...
def __int__(self) -> builtins.int: ...
def __invert__(self) -> Tensor: ...
@overload
def __ior__(self, other: Number) -> Tensor: ...
@overload
def __ior__(self, other: Tensor) -> Tensor: ...
@overload
def __ior__(self, other: Any) -> Tensor: ...
@overload
def __irshift__(self, other: Number) -> Tensor: ...
@overload
def __irshift__(self, other: Tensor) -> Tensor: ...
@overload
def __irshift__(self, other: Any) -> Tensor: ...
def __isub__(self, other: Any) -> Tensor: ...
def __itruediv__(self, other: Any) -> Tensor: ...
@overload
def __ixor__(self, other: Number) -> Tensor: ...
@overload
def __ixor__(self, other: Tensor) -> Tensor: ...
@overload
def __ixor__(self, other: Any) -> Tensor: ...
def __le__(self, other: Any) -> Tensor: ... # type: ignore
def __long__(self) -> builtins.int: ...
@overload
def __lshift__(self, other: Number) -> Tensor: ...
@overload
def __lshift__(self, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self, other: Any) -> Tensor: ...
def __lt__(self, other: Any) -> Tensor: ... # type: ignore
def __matmul__(self, other: Any) -> Tensor: ...
def __mod__(self, other: Any) -> Tensor: ...
def __mul__(self, other: Any) -> Tensor: ...
def __ne__(self, other: Any) -> Tensor: ... # type: ignore
def __neg__(self) -> Tensor: ...
def __nonzero__(self) -> bool: ...
@overload
def __or__(self, other: Number) -> Tensor: ...
@overload
def __or__(self, other: Tensor) -> Tensor: ...
@overload
def __or__(self, other: Any) -> Tensor: ...
def __pow__(self, other: Any) -> Tensor: ...
def __radd__(self, other: Any) -> Tensor: ...
def __rmul__(self, other: Any) -> Tensor: ...
@overload
def __rshift__(self, other: Number) -> Tensor: ...
@overload
def __rshift__(self, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self, other: Any) -> Tensor: ...
def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
def __sub__(self, other: Any) -> Tensor: ...
def __truediv__(self, other: Any) -> Tensor: ...
@overload
def __xor__(self, other: Number) -> Tensor: ...
@overload
def __xor__(self, other: Tensor) -> Tensor: ...
@overload
def __xor__(self, other: Any) -> Tensor: ...
def _coalesced_(self, coalesced: bool) -> Tensor: ...
def _dimI(self) -> _int: ...
def _dimV(self) -> _int: ...
def _indices(self) -> Tensor: ...
def _nnz(self) -> _int: ...
def _values(self) -> Tensor: ...
def abs(self) -> Tensor: ...
def abs_(self) -> Tensor: ...
def acos(self) -> Tensor: ...
def acos_(self) -> Tensor: ...
def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def all(self, dim: _int, keepdim: bool=False) -> Tensor: ...
@overload
def all(self) -> Tensor: ...
def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: bool=False) -> bool: ...
@overload
def any(self, dim: _int, keepdim: bool=False) -> Tensor: ...
@overload
def any(self) -> Tensor: ...
def apply_(self, callable: Callable) -> Tensor: ...
def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def asin(self) -> Tensor: ...
def asin_(self) -> Tensor: ...
def atan(self) -> Tensor: ...
def atan2(self, other: Tensor) -> Tensor: ...
def atan2_(self, other: Tensor) -> Tensor: ...
def atan_(self) -> Tensor: ...
def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def bernoulli(self, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli(self, p: _float, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli_(self, p: Tensor, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli_(self, p: _float=0.5, *, generator: Generator=None) -> Tensor: ...
def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
def bmm(self, mat2: Tensor) -> Tensor: ...
def btrifact(self, *, pivot: bool=True) -> Tuple[Tensor, Tensor]: ...
def btrifact_with_info(self, *, pivot: bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
def btrisolve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
def byte(self) -> Tensor: ...
def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Generator=None) -> Tensor: ...
def ceil(self) -> Tensor: ...
def ceil_(self) -> Tensor: ...
def char(self) -> Tensor: ...
def cholesky(self, upper: bool=False) -> Tensor: ...
def cholesky_solve(self, input2: Tensor, upper: bool=False) -> Tensor: ...
def chunk(self, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_(self, min: _float=-inf, max: _float=inf) -> Tensor: ...
def clamp_max(self, max: Number) -> Tensor: ...
def clamp_max_(self, max: Number) -> Tensor: ...
def clamp_min(self, min: Number) -> Tensor: ...
def clamp_min_(self, min: Number) -> Tensor: ...
def clone(self) -> Tensor: ...
def coalesce(self) -> Tensor: ...
def copy_(self, src: Tensor, non_blocking: bool=False) -> Tensor: ...
def cos(self) -> Tensor: ...
def cos_(self) -> Tensor: ...
def cosh(self) -> Tensor: ...
def cosh_(self) -> Tensor: ...
def cpu(self) -> Tensor: ...
def cross(self, other: Tensor, dim: _int=-1) -> Tensor: ...
def cuda(self, device: Optional[_device]=None, non_blocking: bool=False) -> Tensor: ...
@overload
def cumprod(self, dim: _int, *, dtype: _dtype) -> Tensor: ...
@overload
def cumprod(self, dim: _int) -> Tensor: ...
@overload
def cumsum(self, dim: _int, *, dtype: _dtype) -> Tensor: ...
@overload
def cumsum(self, dim: _int) -> Tensor: ...
def data_ptr(self) -> _int: ...
def dense_dim(self) -> _int: ...
def det(self) -> Tensor: ...
def detach(self) -> Tensor: ...
def detach_(self) -> Tensor: ...
def diag(self, diagonal: _int=0) -> Tensor: ...
def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self, offset: _int=0) -> Tensor: ...
def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def digamma(self) -> Tensor: ...
def digamma_(self) -> Tensor: ...
def dim(self) -> _int: ...
def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
def dot(self, tensor: Tensor) -> Tensor: ...
def double(self) -> Tensor: ...
def eig(self, eigenvectors: bool=False) -> Tuple[Tensor, Tensor]: ...
def element_size(self) -> _int: ...
@overload
def eq(self, other: Number) -> Tensor: ...
@overload
def eq(self, other: Tensor) -> Tensor: ...
@overload
def eq_(self, other: Number) -> Tensor: ...
@overload
def eq_(self, other: Tensor) -> Tensor: ...
def equal(self, other: Tensor) -> bool: ...
def erf(self) -> Tensor: ...
def erf_(self) -> Tensor: ...
def erfc(self) -> Tensor: ...
def erfc_(self) -> Tensor: ...
def erfinv(self) -> Tensor: ...
def erfinv_(self) -> Tensor: ...
def exp(self) -> Tensor: ...
def exp_(self) -> Tensor: ...
@overload
def expand(self, size: _size, *, implicit: bool=False) -> Tensor: ...
@overload
def expand(self, *size: _int, implicit: bool=False) -> Tensor: ...
def expand_as(self, other: Tensor) -> Tensor: ...
def expm1(self) -> Tensor: ...
def expm1_(self) -> Tensor: ...
def exponential_(self, lambd: _float=1, *, generator: Generator=None) -> Tensor: ...
def fft(self, signal_ndim: _int, normalized: bool=False) -> Tensor: ...
@overload
def fill_(self, value: Number) -> Tensor: ...
@overload
def fill_(self, value: Tensor) -> Tensor: ...
def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
@overload
def flip(self, dims: _size) -> Tensor: ...
@overload
def flip(self, *dims: _int) -> Tensor: ...
def float(self) -> Tensor: ...
def floor(self) -> Tensor: ...
def floor_(self) -> Tensor: ...
@overload
def fmod(self, other: Number) -> Tensor: ...
@overload
def fmod(self, other: Tensor) -> Tensor: ...
@overload
def fmod_(self, other: Number) -> Tensor: ...
@overload
def fmod_(self, other: Tensor) -> Tensor: ...
def frac(self) -> Tensor: ...
def frac_(self) -> Tensor: ...
def gather(self, dim: _int, index: Tensor) -> Tensor: ...
@overload
def ge(self, other: Number) -> Tensor: ...
@overload
def ge(self, other: Tensor) -> Tensor: ...
@overload
def ge_(self, other: Number) -> Tensor: ...
@overload
def ge_(self, other: Tensor) -> Tensor: ...
def gels(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
def geometric_(self, p: _float, *, generator: Generator=None) -> Tensor: ...
def geqrf(self) -> Tuple[Tensor, Tensor]: ...
def ger(self, vec2: Tensor) -> Tensor: ...
def gesv(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
def get_device(self) -> _int: ...
@overload
def gt(self, other: Number) -> Tensor: ...
@overload
def gt(self, other: Tensor) -> Tensor: ...
@overload
def gt_(self, other: Number) -> Tensor: ...
@overload
def gt_(self, other: Tensor) -> Tensor: ...
def half(self) -> Tensor: ...
def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
def ifft(self, signal_ndim: _int, normalized: bool=False) -> Tensor: ...
def index_add_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
def index_put(self, indices: Union[Tuple[Tensor, ...], List[Tensor]], values: Tensor, accumulate: bool=False) -> Tensor: ...
def index_put_(self, indices: Union[Tuple[Tensor, ...], List[Tensor]], values: Tensor, accumulate: bool=False) -> Tensor: ...
def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
def indices(self) -> Tensor: ...
def int(self) -> Tensor: ...
def inverse(self) -> Tensor: ...
def irfft(self, signal_ndim: _int, normalized: bool=False, onesided: bool=True, signal_sizes: _size=()) -> Tensor: ...
def is_coalesced(self) -> bool: ...
def is_complex(self) -> bool: ...
def is_contiguous(self) -> bool: ...
def is_cuda(self) -> bool: ...
def is_distributed(self) -> bool: ...
def is_floating_point(self) -> bool: ...
def is_leaf(self) -> bool: ...
def is_nonzero(self) -> bool: ...
def is_same_size(self, other: Tensor) -> bool: ...
def is_set_to(self, tensor: Tensor) -> bool: ...
def is_signed(self) -> bool: ...
def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: bool=False) -> Tensor: ...
def item(self) -> Number: ...
def kthvalue(self, k: _int, dim: _int=-1, keepdim: bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def le(self, other: Number) -> Tensor: ...
@overload
def le(self, other: Tensor) -> Tensor: ...
@overload
def le_(self, other: Number) -> Tensor: ...
@overload
def le_(self, other: Tensor) -> Tensor: ...
def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
def lgamma(self) -> Tensor: ...
def lgamma_(self) -> Tensor: ...
def log(self) -> Tensor: ...
def log10(self) -> Tensor: ...
def log10_(self) -> Tensor: ...
def log1p(self) -> Tensor: ...
def log1p_(self) -> Tensor: ...
def log2(self) -> Tensor: ...
def log2_(self) -> Tensor: ...
def log_(self) -> Tensor: ...
def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Generator=None) -> Tensor: ...
@overload
def log_softmax(self, dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def log_softmax(self, dim: _int) -> Tensor: ...
def logdet(self) -> Tensor: ...
def logsumexp(self, dim: _int, keepdim: bool=False) -> Tensor: ...
def long(self) -> Tensor: ...
@overload
def lt(self, other: Number) -> Tensor: ...
@overload
def lt(self, other: Tensor) -> Tensor: ...
@overload
def lt_(self, other: Number) -> Tensor: ...
@overload
def lt_(self, other: Tensor) -> Tensor: ...
def map_(tensor: Tensor, callable: Callable) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_select(self, mask: Tensor) -> Tensor: ...
def matmul(self, other: Tensor) -> Tensor: ...
def matrix_power(self, n: _int) -> Tensor: ...
@overload
def max(self, dim: _int, keepdim: bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self, other: Tensor) -> Tensor: ...
@overload
def max(self) -> Tensor: ...
@overload
def mean(self, *, dtype: _dtype) -> Tensor: ...
@overload
def mean(self) -> Tensor: ...
@overload
def mean(self, dim: Union[_int, _size], keepdim: bool, *, dtype: _dtype) -> Tensor: ...
@overload
def mean(self, dim: Union[_int, _size], keepdim: bool=False) -> Tensor: ...
@overload
def mean(self, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
@overload
def mean(self, *dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def median(self, dim: _int, keepdim: bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self) -> Tensor: ...
@overload
def min(self, dim: _int, keepdim: bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self, other: Tensor) -> Tensor: ...
@overload
def min(self) -> Tensor: ...
def mm(self, mat2: Tensor) -> Tensor: ...
def mode(self, dim: _int=-1, keepdim: bool=False) -> Tuple[Tensor, Tensor]: ...
def multinomial(self, num_samples: _int, replacement: bool=False, *, generator: Generator=None) -> Tensor: ...
def mv(self, vec: Tensor) -> Tensor: ...
def mvlgamma(self, p: _int) -> Tensor: ...
def mvlgamma_(self, p: _int) -> Tensor: ...
def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
def ndimension(self) -> _int: ...
@overload
def ne(self, other: Number) -> Tensor: ...
@overload
def ne(self, other: Tensor) -> Tensor: ...
@overload
def ne_(self, other: Number) -> Tensor: ...
@overload
def ne_(self, other: Tensor) -> Tensor: ...
def neg(self) -> Tensor: ...
def neg_(self) -> Tensor: ...
def nelement(self) -> _int: ...
def new_empty(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def new_full(self, size: _size, value: Number, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def new_zeros(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def nonzero(self) -> Tensor: ...
def normal_(self, mean: _float=0, std: _float=1, *, generator: Generator=None) -> Tensor: ...
def numel(self) -> _int: ...
def numpy(self) -> Any: ...
def orgqr(self, input2: Tensor) -> Tensor: ...
def ormqr(self, input2: Tensor, input3: Tensor, left: bool=True, transpose: bool=False) -> Tensor: ...
@overload
def permute(self, dims: _size) -> Tensor: ...
@overload
def permute(self, *dims: _int) -> Tensor: ...
def pin_memory(self) -> Tensor: ...
def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
def polygamma(self, n: _int) -> Tensor: ...
def polygamma_(self, n: _int) -> Tensor: ...
def potri(self, upper: bool=True) -> Tensor: ...
@overload
def pow(self, exponent: Number) -> Tensor: ...
@overload
def pow(self, exponent: Tensor) -> Tensor: ...
@overload
def pow_(self, exponent: Number) -> Tensor: ...
@overload
def pow_(self, exponent: Tensor) -> Tensor: ...
def prelu(self, weight: Tensor) -> Tensor: ...
@overload
def prod(self, *, dtype: _dtype) -> Tensor: ...
@overload
def prod(self) -> Tensor: ...
@overload
def prod(self, dim: _int, keepdim: bool, *, dtype: _dtype) -> Tensor: ...
@overload
def prod(self, dim: _int, keepdim: bool=False) -> Tensor: ...
@overload
def prod(self, dim: _int, *, dtype: _dtype) -> Tensor: ...
def pstrf(self, upper: bool=True, tol: Number=-1) -> Tuple[Tensor, Tensor]: ...
def put_(self, index: Tensor, source: Tensor, accumulate: bool=False) -> Tensor: ...
def qr(self) -> Tuple[Tensor, Tensor]: ...
@overload
def random_(self, from_: _int, to: _int, *, generator: Generator=None) -> Tensor: ...
@overload
def random_(self, to: _int, *, generator: Generator=None) -> Tensor: ...
@overload
def random_(self, *, generator: Generator=None) -> Tensor: ...
def reciprocal(self) -> Tensor: ...
def reciprocal_(self) -> Tensor: ...
def relu(self) -> Tensor: ...
def relu_(self) -> Tensor: ...
@overload
def remainder(self, other: Number) -> Tensor: ...
@overload
def remainder(self, other: Tensor) -> Tensor: ...
@overload
def remainder_(self, other: Number) -> Tensor: ...
@overload
def remainder_(self, other: Tensor) -> Tensor: ...
def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
@overload
def repeat(self, repeats: _size) -> Tensor: ...
@overload
def repeat(self, *repeats: _int) -> Tensor: ...
def requires_grad_(self, mode: bool=True) -> Tensor: ...
@overload
def reshape(self, shape: _size) -> Tensor: ...
@overload
def reshape(self, *shape: _int) -> Tensor: ...
def reshape_as(self, other: Tensor) -> Tensor: ...
@overload
def resize_(self, size: _size) -> Tensor: ...
@overload
def resize_(self, *size: _int) -> Tensor: ...
def resize_as_(self, the_template: Tensor) -> Tensor: ...
def rfft(self, signal_ndim: _int, normalized: bool=False, onesided: bool=True) -> Tensor: ...
def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
def round(self) -> Tensor: ...
def round_(self) -> Tensor: ...
def rsqrt(self) -> Tensor: ...
def rsqrt_(self) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
def select(self, dim: _int, index: _int) -> Tensor: ...
@overload
def set_(self, source: Storage) -> Tensor: ...
@overload
def set_(self, source: Storage, storage_offset: _int, size: _size, stride: _size=()) -> Tensor: ...
@overload
def set_(self, source: Tensor) -> Tensor: ...
@overload
def set_(self) -> Tensor: ...
def short(self) -> Tensor: ...
def sigmoid(self) -> Tensor: ...
def sigmoid_(self) -> Tensor: ...
def sign(self) -> Tensor: ...
def sign_(self) -> Tensor: ...
def sin(self) -> Tensor: ...
def sin_(self) -> Tensor: ...
def sinh(self) -> Tensor: ...
def sinh_(self) -> Tensor: ...
@overload
def size(self) -> Size: ...
@overload
def size(self, _int) -> _int: ...
def slogdet(self) -> Tuple[Tensor, Tensor]: ...
def smm(self, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self, dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def softmax(self, dim: _int) -> Tensor: ...
def sort(self, dim: _int=-1, descending: bool=False) -> Tuple[Tensor, Tensor]: ...
def sparse_dim(self) -> _int: ...
def sparse_mask(self, mask: Tensor) -> Tensor: ...
def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def sqrt(self) -> Tensor: ...
def sqrt_(self) -> Tensor: ...
@overload
def squeeze(self) -> Tensor: ...
@overload
def squeeze(self, dim: _int) -> Tensor: ...
@overload
def squeeze_(self) -> Tensor: ...
@overload
def squeeze_(self, dim: _int) -> Tensor: ...
def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def std(self, unbiased: bool=True) -> Tensor: ...
@overload
def std(self, dim: Union[_int, _size], unbiased: bool=True, keepdim: bool=False) -> Tensor: ...
def storage(self) -> Storage: ...
def storage_offset(self) -> _int: ...
@overload
def stride(self) -> Tuple[_int]: ...
@overload
def stride(self, _int) -> _int: ...
@overload
def sum(self, *, dtype: _dtype) -> Tensor: ...
@overload
def sum(self) -> Tensor: ...
@overload
def sum(self, dim: Union[_int, _size], keepdim: bool, *, dtype: _dtype) -> Tensor: ...
@overload
def sum(self, dim: Union[_int, _size], keepdim: bool=False) -> Tensor: ...
@overload
def sum(self, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
@overload
def sum(self, *dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def sum_to_size(self, size: _size) -> Tensor: ...
@overload
def sum_to_size(self, *size: _int) -> Tensor: ...
def svd(self, some: bool=True, compute_uv: bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
def symeig(self, eigenvectors: bool=False, upper: bool=True) -> Tuple[Tensor, Tensor]: ...
def t(self) -> Tensor: ...
def t_(self) -> Tensor: ...
def take(self, index: Tensor) -> Tensor: ...
def tan(self) -> Tensor: ...
def tan_(self) -> Tensor: ...
def tanh(self) -> Tensor: ...
def tanh_(self) -> Tensor: ...
@overload
def to(self, dtype: _dtype, non_blocking: bool=False, copy: bool=False) -> Tensor: ...
@overload
def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: bool=False, copy: bool=False) -> Tensor: ...
@overload
def to(self, other: Tensor, non_blocking: bool=False, copy: bool=False) -> Tensor: ...
def to_dense(self) -> Tensor: ...
@overload
def to_sparse(self, sparse_dim: _int) -> Tensor: ...
@overload
def to_sparse(self) -> Tensor: ...
def tolist(self) -> List: ...
def topk(self, k: _int, dim: _int=-1, largest: bool=True, sorted: bool=True) -> Tuple[Tensor, Tensor]: ...
def trace(self) -> Tensor: ...
def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
def tril(self, diagonal: _int=0) -> Tensor: ...
def tril_(self, diagonal: _int=0) -> Tensor: ...
def triu(self, diagonal: _int=0) -> Tensor: ...
def triu_(self, diagonal: _int=0) -> Tensor: ...
def trtrs(self, A: Tensor, upper: bool=True, transpose: bool=False, unitriangular: bool=False) -> Tuple[Tensor, Tensor]: ...
def trunc(self) -> Tensor: ...
def trunc_(self) -> Tensor: ...
def type(self, dtype: Union[None, str, _dtype]=None, non_blocking: bool=False) -> Union[str, Tensor]: ...
def type_as(self, other: Tensor) -> Tensor: ...
def unbind(self, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
def uniform_(self, from_: _float=0, to: _float=1, *, generator: Generator=None) -> Tensor: ...
def unsqueeze(self, dim: _int) -> Tensor: ...
def unsqueeze_(self, dim: _int) -> Tensor: ...
def values(self) -> Tensor: ...
@overload
def var(self, unbiased: bool=True) -> Tensor: ...
@overload
def var(self, dim: Union[_int, _size], unbiased: bool=True, keepdim: bool=False) -> Tensor: ...
@overload
def view(self, size: _size) -> Tensor: ...
@overload
def view(self, *size: _int) -> Tensor: ...
def view_as(self, other: Tensor) -> Tensor: ...
def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
def zero_(self) -> Tensor: ...
@overload
def zeros_like_(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like__(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like__(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like__(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like__(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like___(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like___(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like___(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like___(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like____(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like____(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like____(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like____(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
# Manually defined methods from torch/tensor.py
def backward(self, gradient: Optional[Tensor]=None, retain_graph: Optional[bool]=None, create_graph: bool=False) -> None: ...
def register_hook(self, hook: Callable) -> Any: ...
def retain_grad(self) -> None: ...
def is_pinned(self) -> bool: ...
def is_shared(self) -> bool: ...
def share_memory_(self) -> None: ...
# TODO: fill in the types for these, or otherwise figure out some
# way to not have to write these out again...
def argmax(self, dim=None, keepdim=False): ...
def argmin(self, dim=None, keepdim=False): ...
def argsort(self, dim=None, descending=False): ...
def norm(self, p="fro", dim=None, keepdim=False): ...
def stft(self, n_fft, hop_length=None, win_length=None, window=None,
center=True, pad_mode='reflect', normalized=False, onesided=True): ...
def split(self, split_size, dim=0): ...
def index_add(self, dim, index, tensor): ...
def index_copy(self, dim, index, tensor): ...
def index_fill(self, dim, index, value): ...
def scatter(self, dim, index, source): ...
def scatter_add(self, dim, index, source): ...
def masked_scatter(self, mask, tensor): ...
def masked_fill(self, mask, value): ...
def unique(self, sorted=True, return_inverse=False, dim=None): ...
@overload
def __and__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __and__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Tensor) -> Tensor: ...
def _argmax(self: Tensor, dim: _int, keepdim: bool=False) -> Tensor: ...
def _argmin(self: Tensor, dim: _int, keepdim: bool=False) -> Tensor: ...
def _baddbmm_mkl_(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _cast_Byte(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Char(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Double(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Float(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Half(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Int(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Long(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _cast_Short(self: Tensor, non_blocking: bool=False) -> Tensor: ...
def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: bool, output_padding: _size, groups: _int, benchmark: bool, deterministic: bool, cudnn_enabled: bool) -> Tensor: ...
def _convolution_nogroup(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: bool, output_padding: _size) -> Tensor: ...
def _copy_same_type_(self: Tensor, src: Tensor) -> None: ...
def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int=0) -> Tuple[Tensor, Tensor]: ...
def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: bool) -> Tuple[Tensor, Tensor]: ...
def _cudnn_init_dropout_state(dropout: _float, train: bool, dropout_seed: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: bool, dropout: _float, train: bool, bidirectional: bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: _int, mode: _int, hidden_size: _int, num_layers: _int, batch_first: bool, bidirectional: bool) -> Tensor: ...
def _cufft_clear_plan_cache() -> None: ...
def _cufft_get_plan_cache_max_size() -> _int: ...
def _cufft_get_plan_cache_size() -> _int: ...
def _cufft_set_plan_cache_max_size(max_size: _int) -> None: ...
def _dim_arange(like: Tensor, dim: _int) -> Tensor: ...
def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: bool=False, mode: _int=0, sparse: bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def _fft_with_size(self: Tensor, signal_ndim: _int, complex_input: bool, complex_output: bool, inverse: bool, checked_signal_sizes: _size, normalized: bool, onesided: bool, output_sizes: _size) -> Tensor: ...
def _fused_dropout(self: Tensor, p: _float, generator: Generator=None) -> Tuple[Tensor, Tensor]: ...
def _log_softmax(self: Tensor, dim: _int, half_to_float: bool) -> Tensor: ...
def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _masked_scale(self: Tensor, mask: Tensor, scale: _float) -> Tensor: ...
def _nnpack_available() -> bool: ...
def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[_int, _size]) -> Tensor: ...
def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: bool) -> Tuple[Tensor, Tensor]: ...
def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: bool, padding_value: Number, total_length: _int) -> Tuple[Tensor, Tensor]: ...
def _reshape_from_tensor(self: Tensor, shape: Tensor) -> Tensor: ...
def _s_copy_from(self: Tensor, dst: Tensor, non_blocking: bool=False) -> Tensor: ...
def _s_where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
def _shape_as_tensor(self: Tensor) -> Tensor: ...
def _softmax(self: Tensor, dim: _int, half_to_float: bool) -> Tensor: ...
def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _sparse_addmm(self: Tensor, sparse: Tensor, dense: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _sparse_mm(sparse: Tensor, dense: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, *, dtype: _dtype) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size]) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
def _standard_gamma(self: Tensor, generator: Generator=None) -> Tensor: ...
def _standard_gamma_grad(self: Tensor, output: Tensor) -> Tensor: ...
def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int=1) -> Tensor: ...
def _unique(self: Tensor, sorted: bool=True, return_inverse: bool=False) -> Tuple[Tensor, Tensor]: ...
def _unique_dim(self: Tensor, dim: _int, sorted: bool=True, return_inverse: bool=False) -> Tuple[Tensor, Tensor]: ...
def _weight_norm(v: Tensor, g: Tensor, dim: _int=0) -> Tensor: ...
def _weight_norm_cuda_interface(v: Tensor, g: Tensor, dim: _int=0) -> Tuple[Tensor, Tensor]: ...
def abs(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def abs_(self: Tensor) -> Tensor: ...
def acos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def acos_(self: Tensor) -> Tensor: ...
def adaptive_avg_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def adaptive_max_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
@overload
def add(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
def addmv_(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
def affine_grid_generator(theta: Tensor, size: _size) -> Tensor: ...
@overload
def all(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def all(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def allclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: bool=False) -> bool: ...
def alpha_dropout(input: Tensor, p: _float, train: bool) -> Tensor: ...
def alpha_dropout_(self: Tensor, p: _float, train: bool) -> Tensor: ...
@overload
def any(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
@overload
def arange(start: Number, end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
@overload
def arange(end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def as_strided(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_tensor(data: Any, dtype: _dtype=None, device: Optional[_device]=None) -> Tensor: ...
def asin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def asin_(self: Tensor) -> Tensor: ...
def atan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan2(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan_(self: Tensor) -> Tensor: ...
def avg_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, ceil_mode: bool=False, count_include_pad: bool=True) -> Tensor: ...
@overload
def baddbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def bartlett_window(window_length: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def bartlett_window(window_length: _int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: bool, momentum: _float, eps: _float, cudnn_enabled: bool) -> Tensor: ...
def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ...
@overload
def bernoulli(self: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bernoulli(self: Tensor, p: _float, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
def binary_cross_entropy_with_logits(self: Tensor, target: Tensor, weight: Optional[Tensor], pos_weight: Optional[Tensor], reduction: _int) -> Tensor: ...
def bincount(self: Tensor, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
@overload
def blackman_window(window_length: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def blackman_window(window_length: _int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def bmm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def btrifact(self: Tensor, *, pivot: bool=True, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def btrifact_with_info(self: Tensor, *, pivot: bool=True, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
def btrisolve(self: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil_(self: Tensor) -> Tensor: ...
def celu(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def celu_(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def cholesky(self: Tensor, upper: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def cholesky_solve(self: Tensor, input2: Tensor, upper: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def chunk(self: Tensor, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max(self: Tensor, max: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max_(self: Tensor, max: Number) -> Tensor: ...
def clamp_min(self: Tensor, min: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_min_(self: Tensor, min: Number) -> Tensor: ...
def clone(self: Tensor) -> Tensor: ...
def combinations(self: Tensor, r: _int=2, with_replacement: bool=False) -> Tensor: ...
def constant_pad_nd(self: Tensor, pad: _size, value: Number=0) -> Tensor: ...
def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv_tbc(self: Tensor, weight: Tensor, bias: Tensor, pad: _int=0) -> Tensor: ...
def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: bool, output_padding: _size, groups: _int) -> Tensor: ...
def cos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cos_(self: Tensor) -> Tensor: ...
def cosh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cosh_(self: Tensor) -> Tensor: ...
def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int=1, eps: _float=1e-08) -> Tensor: ...
def cross(self: Tensor, other: Tensor, dim: _int=-1, *, out: Optional[Tensor]=None) -> Tensor: ...
def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ...
def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def cudnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: bool, deterministic: bool) -> Tensor: ...
def cudnn_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: bool, deterministic: bool) -> Tensor: ...
def cudnn_grid_sampler(self: Tensor, grid: Tensor) -> Tensor: ...
def cudnn_is_acceptable(self: Tensor) -> bool: ...
@overload
def cumprod(self: Tensor, dim: _int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumprod(self: Tensor, dim: _int, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: _int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: _int, *, out: Optional[Tensor]=None) -> Tensor: ...
def det(self: Tensor) -> Tensor: ...
def detach(self: Tensor) -> Tensor: ...
def detach_(self: Tensor) -> Tensor: ...
def diag(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def diag_embed(self: Tensor, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self: Tensor, offset: _int=0) -> Tensor: ...
def diagonal(self: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def digamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dist(self: Tensor, other: Tensor, p: Number=2) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def dot(self: Tensor, tensor: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dropout(input: Tensor, p: _float, train: bool) -> Tensor: ...
def dropout_(self: Tensor, p: _float, train: bool) -> Tensor: ...
def eig(self: Tensor, eigenvectors: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def embedding(weight: Tensor, indices: Tensor, padding_idx: _int=-1, scale_grad_by_freq: bool=False, sparse: bool=False) -> Tensor: ...
def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: bool=False, mode: _int=0, sparse: bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def embedding_renorm_(self: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ...
@overload
def empty(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def empty(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def empty_like(self: Tensor) -> Tensor: ...
@overload
def empty_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def empty_strided(size: _size, stride: _size, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def eq(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def eq(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def equal(self: Tensor, other: Tensor) -> bool: ...
def erf(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erf_(self: Tensor) -> Tensor: ...
def erfc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erfc_(self: Tensor) -> Tensor: ...
def erfinv(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp_(self: Tensor) -> Tensor: ...
def expm1(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def expm1_(self: Tensor) -> Tensor: ...
@overload
def eye(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def eye(n: _int, m: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def fbgemm_is_cpu_supported() -> bool: ...
def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ...
def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ...
def feature_alpha_dropout(input: Tensor, p: _float, train: bool) -> Tensor: ...
def feature_alpha_dropout_(self: Tensor, p: _float, train: bool) -> Tensor: ...
def feature_dropout(input: Tensor, p: _float, train: bool) -> Tensor: ...
def feature_dropout_(self: Tensor, p: _float, train: bool) -> Tensor: ...
def fft(self: Tensor, signal_ndim: _int, normalized: bool=False) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Number) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Tensor) -> Tensor: ...
def flatten(self: Tensor, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
def flip(self: Tensor, dims: _size) -> Tensor: ...
def floor(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def floor_(self: Tensor) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def frac(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, dim: Union[_int, _size], keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def from_numpy(ndarray) -> Tensor: ...
def full(size: _size, fill_value: Number, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def full_like(self: Tensor, fill_value: Number) -> Tensor: ...
@overload
def full_like(self: Tensor, fill_value: Number, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def gather(self: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def gels(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def geqrf(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def ger(self: Tensor, vec2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def gesv(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def get_default_dtype() -> _dtype: ...
def get_num_threads() -> _int: ...
def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int) -> Tensor: ...
def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int) -> Tensor: ...
def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int) -> Tensor: ...
def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enabled: bool=True) -> Tensor: ...
@overload
def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool, batch_first: bool) -> Tuple[Tensor, Tensor]: ...
@overload
def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool) -> Tuple[Tensor, Tensor]: ...
def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def hamming_window(window_length: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: bool, alpha: _float, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: bool, alpha: _float, beta: _float, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def hann_window(window_length: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def hann_window(window_length: _int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def hardshrink(self: Tensor, lambd: Number=0.5) -> Tensor: ...
def histc(self: Tensor, bins: _int=100, min: Number=0, max: Number=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ifft(self: Tensor, signal_ndim: _int, normalized: bool=False) -> Tensor: ...
def index_put(self: Tensor, indices: Union[Tuple[Tensor, ...], List[Tensor]], values: Tensor, accumulate: bool=False) -> Tensor: ...
def index_put_(self: Tensor, indices: Union[Tuple[Tensor, ...], List[Tensor]], values: Tensor, accumulate: bool=False) -> Tensor: ...
def index_select(self: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: bool, momentum: _float, eps: _float, cudnn_enabled: bool) -> Tensor: ...
def inverse(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def irfft(self: Tensor, signal_ndim: _int, normalized: bool=False, onesided: bool=True, signal_sizes: _size=()) -> Tensor: ...
def is_complex(self: Tensor) -> bool: ...
def is_distributed(self: Tensor) -> bool: ...
def is_floating_point(self: Tensor) -> bool: ...
def is_nonzero(self: Tensor) -> bool: ...
def is_same_size(self: Tensor, other: Tensor) -> bool: ...
def is_signed(self: Tensor) -> bool: ...
def isclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: bool=False) -> Tensor: ...
def isnan(self: Tensor) -> Tensor: ...
def kthvalue(self: Tensor, k: _int, dim: _int=-1, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def layer_norm(input: Tensor, normalized_shape: _size, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enable: bool=True) -> Tensor: ...
@overload
def le(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def le(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def lerp(self: Tensor, end: Tensor, weight: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def lgamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def linspace(start: Number, end: Number, steps: _int=100, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def log(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10_(self: Tensor) -> Tensor: ...
def log1p(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log1p_(self: Tensor) -> Tensor: ...
def log2(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log2_(self: Tensor) -> Tensor: ...
def log_(self: Tensor) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: _int) -> Tensor: ...
def logdet(self: Tensor) -> Tensor: ...
def logspace(start: Number, end: Number, steps: _int=100, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def logsumexp(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool, batch_first: bool) -> Tuple[Tensor, Tensor, Tensor]: ...
@overload
def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool) -> Tuple[Tensor, Tensor, Tensor]: ...
def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def lt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def masked_select(self: Tensor, mask: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matmul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matrix_power(self: Tensor, n: _int) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, tol: _float, symmetric: bool=False) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, symmetric: bool=False) -> Tensor: ...
@overload
def max(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def max(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def max_pool1d_with_indices(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def mean(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: Union[_int, _size], keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: Union[_int, _size], keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def median(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def miopen_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: bool, deterministic: bool) -> Tensor: ...
def miopen_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: bool, deterministic: bool) -> Tensor: ...
def mkldnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int) -> Tensor: ...
def mkldnn_convolution_backward_weights(weight_size: _size, grad_output: Tensor, self: Tensor, padding: _size, stride: _size, dilation: _size, groups: _int, bias_defined: bool) -> Tuple[Tensor, Tensor]: ...
def mm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def mode(self: Tensor, dim: _int=-1, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def mul(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mul(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def multinomial(self: Tensor, num_samples: _int, replacement: bool=False, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def mv(self: Tensor, vec: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def mvlgamma(self: Tensor, p: _int) -> Tensor: ...
def narrow(self: Tensor, dim: _int, start: _int, length: _int) -> Tensor: ...
def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: bool, momentum: _float, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def native_clone(self: Tensor) -> Tensor: ...
def native_norm(self: Tensor, p: Number=2) -> Tensor: ...
def native_pow(self: Tensor, exponent: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def native_resize_as_(self: Tensor, the_template: Tensor) -> Tensor: ...
def native_zero_(self: Tensor) -> Tensor: ...
@overload
def ne(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ne(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def neg(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def nonzero(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def norm_except_dim(v: Tensor, pow: _int=2, dim: _int=0) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float=1, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def nuclear_norm(self: Tensor, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def numel(self: Tensor) -> _int: ...
@overload
def ones(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def ones(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def ones_like(self: Tensor) -> Tensor: ...
@overload
def ones_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def orgqr(self: Tensor, input2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ormqr(self: Tensor, input2: Tensor, input3: Tensor, left: bool=True, transpose: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def pairwise_distance(x1: Tensor, x2: Tensor, p: _float=2, eps: _float=1e-06, keepdim: bool=False) -> Tensor: ...
def pdist(self: Tensor, p: _float=2) -> Tensor: ...
def pin_memory(self: Tensor) -> Tensor: ...
def pinverse(self: Tensor, rcond: _float=1e-15) -> Tensor: ...
def pixel_shuffle(self: Tensor, upscale_factor: _int) -> Tensor: ...
def poisson(self: Tensor, generator: Generator=None) -> Tensor: ...
def polygamma(n: _int, self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def potri(self: Tensor, upper: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Number, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def prelu(self: Tensor, weight: Tensor) -> Tensor: ...
@overload
def prod(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: _int, keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: _int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: _int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
def pstrf(self: Tensor, upper: bool=True, tol: Number=-1, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def qr(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
def quantized_lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool, batch_first: bool) -> Tuple[Tensor, Tensor, Tensor]: ...
def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tuple[Tensor, Tensor]: ...
def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
@overload
def rand(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def rand(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def rand(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def rand(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def rand_like(self: Tensor) -> Tensor: ...
@overload
def rand_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randint(low: _int, high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
@overload
def randint(high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
@overload
def randint_like(self: Tensor, high: _int) -> Tensor: ...
@overload
def randint_like(self: Tensor, low: _int, high: _int) -> Tensor: ...
@overload
def randint_like(self: Tensor, high: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randint_like(self: Tensor, low: _int, high: _int, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randn(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randn(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randn_like(self: Tensor) -> Tensor: ...
@overload
def randn_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randperm(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def randperm(n: _int, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def range(start: Number, end: Number, step: Number=1, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def reciprocal(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def relu(self: Tensor) -> Tensor: ...
def relu_(self: Tensor) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def renorm(self: Tensor, p: Number, dim: _int, maxnorm: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def reshape(self: Tensor, shape: _size) -> Tensor: ...
def resize_as_(self: Tensor, the_template: Tensor) -> Tensor: ...
def rfft(self: Tensor, signal_ndim: _int, normalized: bool=False, onesided: bool=True) -> Tensor: ...
@overload
def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool, batch_first: bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool) -> Tuple[Tensor, Tensor]: ...
def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool, batch_first: bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: bool, num_layers: _int, dropout: _float, train: bool, bidirectional: bool) -> Tuple[Tensor, Tensor]: ...
def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
def roll(self: Tensor, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self: Tensor, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
def round(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def round_(self: Tensor) -> Tensor: ...
def rrelu(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: bool=False, generator: Generator=None) -> Tensor: ...
def rrelu_(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: bool=False, generator: Generator=None) -> Tensor: ...
def rsqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def rsqrt_(self: Tensor) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Number, alpha: Number=1) -> Tensor: ...
def s_copy_(self: Tensor, src: Tensor, non_blocking: bool=False) -> Tensor: ...
def s_native_addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
def s_native_addmm_(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def scalar_tensor(s: Number, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def select(self: Tensor, dim: _int, index: _int) -> Tensor: ...
def selu(self: Tensor) -> Tensor: ...
def selu_(self: Tensor) -> Tensor: ...
def set_flush_denormal(mode: bool) -> bool: ...
def set_num_threads(num: _int) -> None: ...
def sigmoid(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sigmoid_(self: Tensor) -> Tensor: ...
def sign(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin_(self: Tensor) -> Tensor: ...
def sinh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sinh_(self: Tensor) -> Tensor: ...
def slogdet(self: Tensor) -> Tuple[Tensor, Tensor]: ...
def smm(self: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: _int, dtype: _dtype) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: _int) -> Tensor: ...
def sort(self: Tensor, dim: _int=-1, descending: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def sparse_coo_tensor(indices: Tensor, values: Union[Tensor,List], size: Optional[_size]=None, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def split_with_sizes(self: Tensor, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def sqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sqrt_(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def sspaddmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, unbiased: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, dim: Union[_int, _size], unbiased: bool=True, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def sum(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: Union[_int, _size], keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: Union[_int, _size], keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ...
def svd(self: Tensor, some: bool=True, compute_uv: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
def symeig(self: Tensor, eigenvectors: bool=False, upper: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def t(self: Tensor) -> Tensor: ...
def take(self: Tensor, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan_(self: Tensor) -> Tensor: ...
def tanh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tanh_(self: Tensor) -> Tensor: ...
def tensor(data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: bool=False) -> Tensor: ...
def threshold(self: Tensor, threshold: Number, value: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def threshold_(self: Tensor, threshold: Number, value: Number) -> Tensor: ...
def topk(self: Tensor, k: _int, dim: _int=-1, largest: bool=True, sorted: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def trace(self: Tensor) -> Tensor: ...
def transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
def tril(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def tril_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def triu(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def triu_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
def trtrs(self: Tensor, A: Tensor, upper: bool=True, transpose: bool=False, unitriangular: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def trunc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def trunc_(self: Tensor) -> Tensor: ...
def unbind(self: Tensor, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def unsqueeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def var(self: Tensor, unbiased: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var(self: Tensor, dim: Union[_int, _size], unbiased: bool=True, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
def zero_(self: Tensor) -> Tensor: ...
@overload
def zeros(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def zeros(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
@overload
def zeros_like(self: Tensor) -> Tensor: ...
@overload
def zeros_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Union[_device, str, None]=None, requires_grad:bool=False) -> Tensor: ...
class DoubleStorage(Storage): ...
class FloatStorage(Storage): ...
class LongStorage(Storage): ...
class IntStorage(Storage): ...
class ShortStorage(Storage): ...
class CharStorage(Storage): ...
class ByteStorage(Storage): ...
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
complex128: dtype = ...
# Pure Python functions defined in torch/__init__.py
def typename(obj) -> str: ...
def is_tensor(obj) -> bool: ...
def is_storage(obj) -> bool: ...
def set_default_tensor_type(type) -> None: ... # ick, what a bad legacy API
def set_default_dtype(d : _dtype) -> None: ...
def manager_path() -> str: ...
def compiled_with_cxx11_abi() -> bool: ...
@Priyatham10
Copy link

Hi Sir,
I have an extension module with .so and .pyd files that are packaged as a Python package. Could you please tell me whether did you write this .pyi stub file manually or generated with the automatic stub generator - mypy-stubgen, pybind11-stubgen? What is your opinion or suggestions for me that whether we should go for manually writing all the stubs? Please point me to any resources of your knowledge..

@ezyang
Copy link
Author

ezyang commented May 18, 2022

It's generated but from a custom written script. Check tools/pyi/gen_pyi.py

@Priyatham10
Copy link

Great, Thank you. I checked it.. I got an idea now how you iterated through the list of names from the main import and generated type hints for them. Great workaround..

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment