Last active
December 5, 2024 13:35
-
-
Save f0k/63a664160d016a491b2cbea15913d549 to your computer and use it in GitHub Desktop.
Simple python script to obtain CUDA device information
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
Outputs some information on CUDA-enabled devices on your computer, | |
including current memory usage. | |
It's a port of https://gist.github.com/f0k/0d6431e3faa60bffc788f8b4daa029b1 | |
from C to Python with ctypes, so it can run without compiling anything. Note | |
that this is a direct translation with no attempt to make the code Pythonic. | |
It's meant as a general demonstration on how to obtain CUDA device information | |
from Python without resorting to nvidia-smi or a compiled Python extension. | |
Author: Jan Schlüter | |
License: MIT (https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549#gistcomment-3870498) | |
""" | |
import sys | |
import ctypes | |
# Some constants taken from cuda.h | |
CUDA_SUCCESS = 0 | |
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16 | |
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39 | |
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13 | |
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36 | |
def ConvertSMVer2Cores(major, minor): | |
# Returns the number of CUDA cores per multiprocessor for a given | |
# Compute Capability version. There is no way to retrieve that via | |
# the API, so it needs to be hard-coded. | |
# See _ConvertSMVer2Cores in helper_cuda.h in NVIDIA's CUDA Samples. | |
return {(1, 0): 8, # Tesla | |
(1, 1): 8, | |
(1, 2): 8, | |
(1, 3): 8, | |
(2, 0): 32, # Fermi | |
(2, 1): 48, | |
(3, 0): 192, # Kepler | |
(3, 2): 192, | |
(3, 5): 192, | |
(3, 7): 192, | |
(5, 0): 128, # Maxwell | |
(5, 2): 128, | |
(5, 3): 128, | |
(6, 0): 64, # Pascal | |
(6, 1): 128, | |
(6, 2): 128, | |
(7, 0): 64, # Volta | |
(7, 2): 64, | |
(7, 5): 64, # Turing | |
(8, 0): 64, # Ampere | |
(8, 6): 128, | |
(8, 7): 128, | |
(8, 9): 128, # Ada | |
(9, 0): 128, # Hopper | |
}.get((major, minor), 0) | |
def main(): | |
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll', 'cuda.dll') | |
for libname in libnames: | |
try: | |
cuda = ctypes.CDLL(libname) | |
except OSError: | |
continue | |
else: | |
break | |
else: | |
raise OSError("could not load any of: " + ' '.join(libnames)) | |
nGpus = ctypes.c_int() | |
name = b' ' * 100 | |
cc_major = ctypes.c_int() | |
cc_minor = ctypes.c_int() | |
cores = ctypes.c_int() | |
threads_per_core = ctypes.c_int() | |
clockrate = ctypes.c_int() | |
freeMem = ctypes.c_size_t() | |
totalMem = ctypes.c_size_t() | |
result = ctypes.c_int() | |
device = ctypes.c_int() | |
context = ctypes.c_void_p() | |
error_str = ctypes.c_char_p() | |
result = cuda.cuInit(0) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuInit failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
result = cuda.cuDeviceGetCount(ctypes.byref(nGpus)) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuDeviceGetCount failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
print("Found %d device(s)." % nGpus.value) | |
for i in range(nGpus.value): | |
result = cuda.cuDeviceGet(ctypes.byref(device), i) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuDeviceGet failed with error code %d: %s" % (result, error_str.value.decode())) | |
return 1 | |
print("Device: %d" % i) | |
if cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) == CUDA_SUCCESS: | |
print(" Name: %s" % (name.split(b'\0', 1)[0].decode())) | |
if cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) == CUDA_SUCCESS: | |
print(" Compute Capability: %d.%d" % (cc_major.value, cc_minor.value)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(cores), CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device) == CUDA_SUCCESS: | |
print(" Multiprocessors: %d" % cores.value) | |
print(" CUDA Cores: %s" % (cores.value * ConvertSMVer2Cores(cc_major.value, cc_minor.value) or "unknown")) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(threads_per_core), CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, device) == CUDA_SUCCESS: | |
print(" Concurrent threads: %d" % (cores.value * threads_per_core.value)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device) == CUDA_SUCCESS: | |
print(" GPU clock: %g MHz" % (clockrate.value / 1000.)) | |
if cuda.cuDeviceGetAttribute(ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device) == CUDA_SUCCESS: | |
print(" Memory clock: %g MHz" % (clockrate.value / 1000.)) | |
try: | |
result = cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) | |
except AttributeError: | |
result = cuda.cuCtxCreate(ctypes.byref(context), 0, device) | |
if result != CUDA_SUCCESS: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuCtxCreate failed with error code %d: %s" % (result, error_str.value.decode())) | |
else: | |
try: | |
result = cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) | |
except AttributeError: | |
result = cuda.cuMemGetInfo(ctypes.byref(freeMem), ctypes.byref(totalMem)) | |
if result == CUDA_SUCCESS: | |
print(" Total Memory: %ld MiB" % (totalMem.value / 1024**2)) | |
print(" Free Memory: %ld MiB" % (freeMem.value / 1024**2)) | |
else: | |
cuda.cuGetErrorString(result, ctypes.byref(error_str)) | |
print("cuMemGetInfo failed with error code %d: %s" % (result, error_str.value.decode())) | |
cuda.cuCtxDetach(context) | |
return 0 | |
if __name__=="__main__": | |
sys.exit(main()) |
Thank you for this script! It helped me debug an issue with getting CUDA working in Windows 10 with Ubuntu WSL.
See this: bitsandbytes-foundation/bitsandbytes#337 - Thanks again @f0k !!!
Thanks! Further refactoring with decorators.
import ctypes
import json
from functools import wraps
from typing import Any, Dict, List
from warnings import warn
# Constants from cuda.h
CUDA_SUCCESS = 0
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36
# Conversions from semantic version numbers
# Borrowed from original gist and updated from the "GPUs supported" section of this Wikipedia article
# https://en.wikipedia.org/wiki/CUDA
SEMVER_TO_CORES = {
(1, 0): 8, # Tesla
(1, 1): 8,
(1, 2): 8,
(1, 3): 8,
(2, 0): 32, # Fermi
(2, 1): 48,
(3, 0): 192, # Kepler
(3, 2): 192,
(3, 5): 192,
(3, 7): 192,
(5, 0): 128, # Maxwell
(5, 2): 128,
(5, 3): 128,
(6, 0): 64, # Pascal
(6, 1): 128,
(6, 2): 128,
(7, 0): 64, # Volta
(7, 2): 64,
(7, 5): 64, # Turing
(8, 0): 64, # Ampere
(8, 6): 64,
}
SEMVER_TO_ARCH = {
(1, 0): "tesla",
(1, 1): "tesla",
(1, 2): "tesla",
(1, 3): "tesla",
(2, 0): "fermi",
(2, 1): "fermi",
(3, 0): "kepler",
(3, 2): "kepler",
(3, 5): "kepler",
(3, 7): "kepler",
(5, 0): "maxwell",
(5, 2): "maxwell",
(5, 3): "maxwell",
(6, 0): "pascal",
(6, 1): "pascal",
(6, 2): "pascal",
(7, 0): "volta",
(7, 2): "volta",
(7, 5): "turing",
(8, 0): "ampere",
(8, 6): "ampere",
}
# Decorator for CUDA API calls
def cuda_api_call(func):
"""
Decorator to wrap CUDA API calls and check their results.
Raises RuntimeError if the CUDA call does not return CUDA_SUCCESS.
"""
@wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if result != CUDA_SUCCESS:
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result, ctypes.byref(error_str))
raise RuntimeError(
f"{func.__name__} failed with error code {result}: {error_str.value.decode()}"
)
return result
return wrapper
def cuda_api_call_warn(func):
"""
Decorator to wrap CUDA API calls and check their results.
Prints a warning message if the CUDA call does not return CUDA_SUCCESS.
"""
@wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if result != CUDA_SUCCESS:
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result, ctypes.byref(error_str))
warn(
f"Warning: {func.__name__} failed with error code {result}: {error_str.value.decode()}"
)
return result
return wrapper
# Attempt to load the CUDA library
libnames = ("libcuda.so", "libcuda.dylib", "cuda.dll")
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except OSError:
continue
else:
break
else:
raise ImportError(f'Could not load any of: {", ".join(libnames)}')
# CUDA API calls wrapped with the decorator
@cuda_api_call
def cuInit(flags):
return cuda.cuInit(flags)
@cuda_api_call
def cuDeviceGetCount(count):
return cuda.cuDeviceGetCount(count)
@cuda_api_call
def cuDeviceGet(device, ordinal):
return cuda.cuDeviceGet(device, ordinal)
@cuda_api_call
def cuDeviceGetName(name, len, dev):
return cuda.cuDeviceGetName(name, len, dev)
@cuda_api_call
def cuDeviceComputeCapability(major, minor, dev):
return cuda.cuDeviceComputeCapability(major, minor, dev)
@cuda_api_call
def cuDeviceGetAttribute(pi, attrib, dev):
return cuda.cuDeviceGetAttribute(pi, attrib, dev)
@cuda_api_call_warn
def cuCtxCreate(pctx, flags, dev):
try:
result = cuda.cuCtxCreate_v2(pctx, flags, dev)
except AttributeError:
result = cuda.cuCtxCreate(pctx, flags, dev)
return result
@cuda_api_call_warn
def cuMemGetInfo(free, total):
try:
result = cuda.cuMemGetInfo_v2(free, total)
except AttributeError:
result = cuda.cuMemGetInfo(free, total)
return result
@cuda_api_call
def cuCtxDetach(ctx):
return cuda.cuCtxDetach(ctx)
# Main function to get CUDA device specs
def get_cuda_device_specs() -> List[Dict[str, Any]]:
"""Generate spec for each GPU device with format
{
'name': str,
'compute_capability': (major: int, minor: int),
'cores': int,
'cuda_cores': int,
'concurrent_threads': int,
'gpu_clock_mhz': float,
'mem_clock_mhz': float,
'total_mem_mb': float,
'free_mem_mb': float,
'architecture': str,
'cuda_cores': int
}
"""
# Initialize CUDA
cuInit(0)
num_gpus = ctypes.c_int()
cuDeviceGetCount(ctypes.byref(num_gpus))
device_specs = []
for i in range(num_gpus.value):
spec = {}
device = ctypes.c_int()
cuDeviceGet(ctypes.byref(device), i)
name = b" " * 100
cuDeviceGetName(ctypes.c_char_p(name), len(name), device)
spec["name"] = name.split(b"\0", 1)[0].decode()
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
cuDeviceComputeCapability(
ctypes.byref(cc_major), ctypes.byref(cc_minor), device
)
compute_capability = (cc_major.value, cc_minor.value)
spec["compute_capability"] = compute_capability
cores = ctypes.c_int()
cuDeviceGetAttribute(
ctypes.byref(cores), CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device
)
spec["cores"] = cores.value
threads_per_core = ctypes.c_int()
cuDeviceGetAttribute(
ctypes.byref(threads_per_core),
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR,
device,
)
spec["concurrent_threads"] = cores.value * threads_per_core.value
clockrate = ctypes.c_int()
cuDeviceGetAttribute(
ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device
)
spec["gpu_clock_mhz"] = clockrate.value / 1000.0
cuDeviceGetAttribute(
ctypes.byref(clockrate), CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device
)
spec["mem_clock_mhz"] = clockrate.value / 1000.0
context = ctypes.c_void_p()
if cuCtxCreate(ctypes.byref(context), 0, device) == CUDA_SUCCESS:
free_mem = ctypes.c_size_t()
total_mem = ctypes.c_size_t()
cuMemGetInfo(ctypes.byref(free_mem), ctypes.byref(total_mem))
spec["total_mem_mb"] = total_mem.value / 1024**2
spec["free_mem_mb"] = free_mem.value / 1024**2
spec["architecture"] = SEMVER_TO_ARCH.get(compute_capability, "unknown")
spec["cuda_cores"] = cores.value * SEMVER_TO_CORES.get(
compute_capability, "unknown"
)
cuCtxDetach(context)
device_specs.append(spec)
return device_specs
if __name__ == "__main__":
print(json.dumps(get_cuda_device_specs(), indent=2))
Thanks for sharing @addisonklinke and @IanBoyanZhang! Looks good except that it would probably be easier to maintain if the two SEMVER dictionaries were joined into one, and the SEMVER_TO_CORES.get()
should default to 0 instead of "unknown", otherwise you will get a very long string in spec["cuda_cores"] for new architectures :) I will not update the gist as the original is so much shorter, but yours will be handy for people who need to access the information from another script.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks @f0k for the excellent snippet! Here is an importable version which can be run inside other scripts as
get_cuda_device_specs()
. It returns a list of specification dicts per CUDA deviceI also made some minor cosmetic updates
str.format()
to f-strings for readabilitysys.exit
codes toRuntimeError
andwarnings.warn
where appropriate