Skip to content

Instantly share code, notes, and snippets.

@fabito
Last active November 27, 2024 08:23
Show Gist options
  • Save fabito/a49bb6a5593594f26275bc90baba6e32 to your computer and use it in GitHub Desktop.
Save fabito/a49bb6a5593594f26275bc90baba6e32 to your computer and use it in GitHub Desktop.
YOLO v3 Layers
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64
4 Shortcut Layer: 1
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
8 Shortcut Layer: 5
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
11 Shortcut Layer: 8
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
15 Shortcut Layer: 12
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
18 Shortcut Layer: 15
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
21 Shortcut Layer: 18
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
24 Shortcut Layer: 21
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
27 Shortcut Layer: 24
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
30 Shortcut Layer: 27
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
33 Shortcut Layer: 30
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
36 Shortcut Layer: 33
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
40 Shortcut Layer: 37
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
43 Shortcut Layer: 40
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
46 Shortcut Layer: 43
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
49 Shortcut Layer: 46
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
52 Shortcut Layer: 49
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
55 Shortcut Layer: 52
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
58 Shortcut Layer: 55
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
61 Shortcut Layer: 58
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024
63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
65 Shortcut Layer: 62
66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
68 Shortcut Layer: 65
69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
71 Shortcut Layer: 68
72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
74 Shortcut Layer: 71
75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
81 conv 18 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 18
82 detection
83 route 79
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256
85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
93 conv 18 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 18
94 detection
95 route 91
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128
97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
105 conv 18 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 18
106 detection
@nvnnghia
Copy link

nvnnghia commented Apr 3, 2018

can you explain shortcut layer?

@KFT-JunYS
Copy link

81 conv 18 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 18
93 conv 18 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 18
105 conv 18 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 18

It is just for 1class. I spent a lot of time to be realized that. oh..;;

@pegjul
Copy link

pegjul commented Aug 14, 2019

81 conv 18 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 18
93 conv 18 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 18
105 conv 18 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 18

It is just for 1class. I spent a lot of time to be realized that. oh..;;

I also spend a lot of time to understand that.

18 filters are used because:

[x,y,w,h,confidence,class0]x[anchor0,anchor1,anchor2] = 6*3 = 18

In https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg there are 255 filters because there are 80 classes:

[x,y,w,h,confidence,class0,...,class79]x[anchor0,anchor1,anchor2] = 85*3 = 255

@ssooffiiaannee
Copy link

Where in the paper is this explained?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment