-
-
Save fchollet/f35fbc80e066a49d65f1688a7e99f069 to your computer and use it in GitHub Desktop.
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats | |
- put the cat pictures index 1000-1400 in data/validation/cats | |
- put the dogs pictures index 12500-13499 in data/train/dogs | |
- put the dog pictures index 13500-13900 in data/validation/dogs | |
So that we have 1000 training examples for each class, and 400 validation examples for each class. | |
In summary, this is our directory structure: | |
``` | |
data/ | |
train/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
validation/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
``` | |
''' | |
import numpy as np | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential | |
from keras.layers import Dropout, Flatten, Dense | |
from keras import applications | |
# dimensions of our images. | |
img_width, img_height = 150, 150 | |
top_model_weights_path = 'bottleneck_fc_model.h5' | |
train_data_dir = 'data/train' | |
validation_data_dir = 'data/validation' | |
nb_train_samples = 2000 | |
nb_validation_samples = 800 | |
epochs = 50 | |
batch_size = 16 | |
def save_bottlebeck_features(): | |
datagen = ImageDataGenerator(rescale=1. / 255) | |
# build the VGG16 network | |
model = applications.VGG16(include_top=False, weights='imagenet') | |
generator = datagen.flow_from_directory( | |
train_data_dir, | |
target_size=(img_width, img_height), | |
batch_size=batch_size, | |
class_mode=None, | |
shuffle=False) | |
bottleneck_features_train = model.predict_generator( | |
generator, nb_train_samples // batch_size) | |
np.save(open('bottleneck_features_train.npy', 'w'), | |
bottleneck_features_train) | |
generator = datagen.flow_from_directory( | |
validation_data_dir, | |
target_size=(img_width, img_height), | |
batch_size=batch_size, | |
class_mode=None, | |
shuffle=False) | |
bottleneck_features_validation = model.predict_generator( | |
generator, nb_validation_samples // batch_size) | |
np.save(open('bottleneck_features_validation.npy', 'w'), | |
bottleneck_features_validation) | |
def train_top_model(): | |
train_data = np.load(open('bottleneck_features_train.npy')) | |
train_labels = np.array( | |
[0] * (nb_train_samples / 2) + [1] * (nb_train_samples / 2)) | |
validation_data = np.load(open('bottleneck_features_validation.npy')) | |
validation_labels = np.array( | |
[0] * (nb_validation_samples / 2) + [1] * (nb_validation_samples / 2)) | |
model = Sequential() | |
model.add(Flatten(input_shape=train_data.shape[1:])) | |
model.add(Dense(256, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(1, activation='sigmoid')) | |
model.compile(optimizer='rmsprop', | |
loss='binary_crossentropy', metrics=['accuracy']) | |
model.fit(train_data, train_labels, | |
epochs=epochs, | |
batch_size=batch_size, | |
validation_data=(validation_data, validation_labels)) | |
model.save_weights(top_model_weights_path) | |
save_bottlebeck_features() | |
train_top_model() |
Do we need an equal number of images in each class
Dears @biswagsingh @srikar2097 @drewszurko @aspiringguru
I run this but the network is clearly OVERFITTING. what is your idea to prevent it? I saw some folks said that the way to prevent it is to augment train data or increment train samples or add dropout layer.
I just wanna know what is your idea? did you find a way?
Fine tuned models' Prediction code
This codes were checked by myself. They all worked fine.
- If someone want to predict image classes in same model script where model were trained, here is the code :
img_width, img_height = 224, 224
batch_size = 1
datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = datagen.flow_from_directory(
test_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
test_generator.reset()
pred= model.predict_generator(test_generator, steps = no_of_images/batch_size)
predicted_class_indices=np.argmax(pred, axis =1 )
labels = (train_generator.class_indices)
labels = dict((v, k) for k, v in labels.items())
predictions = [labels[k] for k in predicted_class_indices]
print(predicted_class_indices)
print (labels)
print (predictions)
This code is inspired by stack overflow answer. click here
- If someone want to predict image classes in different script (separate from training script file), here is the code :
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
import json
import os
from tensorflow.keras.models import model_from_json
#Just give below lines parameters
best_weights = 'path to .h5 weight file'
model_json = 'path to saved model json file'
test_dir = 'path to test images'
img_width, img_height = 224, 224
batch_size = 1
nb_img_samples = #no of testing images
with open(model_json, 'r') as json_file:
json_savedModel= json_file.read()
model = tf.keras.models.model_from_json(json_savedModel)
model.summary()
model.load_weights(best_weights)
datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = datagen.flow_from_directory(
folder_path,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
test_generator.reset()
pred= model.predict_generator(test_generator, steps = nb_img_samples/batch_size)
predicted_class_indices=np.argmax(pred,axis=1)
labels = {'cats': 0, 'dogs': 1} #if you have more classes, just add like this in correct order where your training folder order.
labels = dict((v,k) for k,v in labels.items())
predictions = [labels[k] for k in predicted_class_indices]
print(predicted_class_indices)
print (labels)
print (predictions)
'''
I am using this code for classifying ten class of faces using vgg facenet but getting a error can someone help
TypeError Traceback (most recent call last)
in
71
72 save_bottlebeck_features()
---> 73 train_top_model()
in train_top_model()
51 train_data = np.load(open('bottleneck_features_train.npy','rb'))
52 train_labels = np.array(
---> 53 [0] * (nb_train_samples / 2) + [1] * (nb_train_samples / 2))
54
55 validation_data = np.load(open('bottleneck_features_validation.npy','rb'))
TypeError: can't multiply sequence by non-int of type 'float'
'''
My solution: you can use '//' instead of '/', the last one would make the result be 'float',while the former one will get the result in 'int' type,which is required by the program.
Do we need an equal number of images in each class
Yes, because if we provide equal no of images then the model would be able to generalize well
Fine tuned models' Prediction code
This codes were checked by myself. They all worked fine.
- If someone want to predict image classes in same model script where model were trained, here is the code :
img_width, img_height = 224, 224 batch_size = 1 datagen = ImageDataGenerator(rescale=1. / 255) test_generator = datagen.flow_from_directory( test_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) test_generator.reset() pred= model.predict_generator(test_generator, steps = no_of_images/batch_size) predicted_class_indices=np.argmax(pred, axis =1 ) labels = (train_generator.class_indices) labels = dict((v, k) for k, v in labels.items()) predictions = [labels[k] for k in predicted_class_indices] print(predicted_class_indices) print (labels) print (predictions)
This code is inspired by stack overflow answer. click here
- If someone want to predict image classes in different script (separate from training script file), here is the code :
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator import json import os from tensorflow.keras.models import model_from_json #Just give below lines parameters best_weights = 'path to .h5 weight file' model_json = 'path to saved model json file' test_dir = 'path to test images' img_width, img_height = 224, 224 batch_size = 1 nb_img_samples = #no of testing images with open(model_json, 'r') as json_file: json_savedModel= json_file.read() model = tf.keras.models.model_from_json(json_savedModel) model.summary() model.load_weights(best_weights) datagen = ImageDataGenerator(rescale=1. / 255) test_generator = datagen.flow_from_directory( folder_path, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) test_generator.reset() pred= model.predict_generator(test_generator, steps = nb_img_samples/batch_size) predicted_class_indices=np.argmax(pred,axis=1) labels = {'cats': 0, 'dogs': 1} #if you have more classes, just add like this in correct order where your training folder order. labels = dict((v,k) for k,v in labels.items()) predictions = [labels[k] for k in predicted_class_indices] print(predicted_class_indices) print (labels) print (predictions)
please help me, I got this error when running that codes, I want to predict image classes in same model script
problem solved actually I created labels for two classes whereas my model has to clasify among 10 classes, so changed the train_label= np.array([0]*nb_train_samples/10+.......[9]*nb_train_samples/10)