Skip to content

Instantly share code, notes, and snippets.

@fetburner
Created December 4, 2017 22:14
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save fetburner/3e48c8a947206ad843a724f5039302f6 to your computer and use it in GitHub Desktop.
Save fetburner/3e48c8a947206ad843a724f5039302f6 to your computer and use it in GitHub Desktop.
TPPmark 2017
Require Import List Omega Program.
Section ListPairDP.
Variable A : Set.
Variable X : Set.
Variable f_nil_nil : A.
Variable f_nil_l2s : list (A * X).
Variable f_l1_nils : list (A * X).
Variable f_cons_cons : X -> X -> A -> A -> A -> A.
Variable R : list X -> list X -> A -> Prop.
Hypotheses f_nil_nil_spec : R nil nil f_nil_nil.
Hypotheses f_nil_l2s_spec : forall i f_nil_l2' y,
nth_error f_nil_l2s i = Some (f_nil_l2', y) ->
R nil (skipn i (map snd f_nil_l2s)) f_nil_l2'.
Hypotheses f_l1_nils_spec : forall i f_l1'_nil x,
nth_error f_l1_nils i = Some (f_l1'_nil, x) ->
R (skipn i (map snd f_l1_nils)) nil f_l1'_nil.
Hypotheses f_cons_cons_spec : forall x l1' y l2' f_l1'_l2' f_l1_l2' f_l1'_l2,
R l1' l2' f_l1'_l2' ->
R (x :: l1') l2' f_l1_l2' ->
R l1' (y :: l2') f_l1'_l2 ->
R (x :: l1') (y :: l2') (f_cons_cons x y f_l1'_l2' f_l1_l2' f_l1'_l2).
Definition ListPairDP_body {B} x f_l1_nil f_l1'_nil := fix ListPairDP_body k f_l1'_l2s : B :=
match f_l1'_l2s with
| nil => k f_l1'_nil f_l1_nil nil
| (f_l1'_l2, y) :: f_l1'_l2's => ListPairDP_body (fun f_l1'_l2' f_l1_l2' memo_l1_l2' =>
let f_l1_l2 := f_cons_cons x y f_l1'_l2' f_l1_l2' f_l1'_l2 in
k f_l1'_l2 f_l1_l2 ((f_l1_l2, y) :: memo_l1_l2')) f_l1'_l2's
end.
Fixpoint ListPairDP_aux {B} k f_l1_nils : B :=
match f_l1_nils with
| nil => k f_nil_nil (hd f_nil_nil (map fst f_nil_l2s)) f_nil_l2s
| (f_l1_nil, x) :: f_l1'_nils => ListPairDP_aux (fun f_l1'_nil _ =>
ListPairDP_body x f_l1_nil f_l1'_nil (const (k f_l1_nil))) f_l1'_nils
end.
Definition ListPairDP := ListPairDP_aux (fun _ f_l1_l2 _ => f_l1_l2) f_l1_nils.
Lemma ListPairDP_body_spec B (P : B -> Prop) x l1' f_l1_nil f_l1'_nil f_l1'_l2s :
R l1' nil f_l1'_nil ->
R (x :: l1') nil f_l1_nil ->
(forall i f_l1'_l2' y,
nth_error f_l1'_l2s i = Some (f_l1'_l2', y) ->
R l1' (skipn i (map snd f_l1'_l2s)) f_l1'_l2') ->
forall k,
(forall f_l1'_l2 f_l1_l2 f_l1_l2s,
R l1' (map snd f_l1'_l2s) f_l1'_l2 ->
R (x :: l1') (map snd f_l1'_l2s) f_l1_l2 ->
map snd f_l1'_l2s = map snd f_l1_l2s ->
(forall i f_l1_l2' y,
nth_error f_l1_l2s i = Some (f_l1_l2', y) ->
R (x :: l1') (skipn i (map snd f_l1'_l2s)) f_l1_l2') ->
P (k f_l1'_l2 f_l1_l2 f_l1_l2s)) ->
P (ListPairDP_body x f_l1_nil f_l1'_nil k f_l1'_l2s).
Proof.
intros ? ? Hf_l1'_l2s.
induction f_l1'_l2s as [ | [ ] ? IHf_l1'_l2's ]; simpl; intros k Hk.
- apply Hk; eauto.
intros [ ]; inversion 1.
- apply IHf_l1'_l2's.
+ intros i. apply Hf_l1'_l2s with (i := S i).
+ intros ? ? ? ? ? ? ?.
specialize (Hf_l1'_l2s 0 _ _ eq_refl); simpl in *.
apply Hk; eauto.
* simpl. congruence.
* intros [ ]; inversion 1; subst; simpl; eauto.
Qed.
Lemma ListPairDP_aux_spec B (P : B -> Prop) f_l1'_nils :
(forall i f_l1'_nil x,
nth_error f_l1'_nils i = Some (f_l1'_nil, x) ->
R (skipn i (map snd f_l1'_nils)) nil f_l1'_nil) ->
forall k,
(forall f_l1_nil f_l1_l2 f_l1_l2s,
R (map snd f_l1'_nils) nil f_l1_nil ->
R (map snd f_l1'_nils) (map snd f_nil_l2s) f_l1_l2 ->
map snd f_nil_l2s = map snd f_l1_l2s ->
(forall i f_l1_l2' y,
nth_error f_l1_l2s i = Some (f_l1_l2', y) ->
R (map snd f_l1'_nils) (skipn i (map snd f_nil_l2s)) f_l1_l2') ->
P (k f_l1_nil f_l1_l2 f_l1_l2s)) ->
P (ListPairDP_aux k f_l1'_nils).
Proof.
intros Hf_l1'_nil.
induction f_l1'_nils as [ | [ ? ? ] f_l1'_nils IHf_l1'_nils ]; simpl; intros k Hk.
- apply Hk; eauto.
destruct f_nil_l2s as [ | [ ? ? ]]; simpl in *; eauto.
apply (f_nil_l2s_spec 0 _ _ eq_refl).
- apply IHf_l1'_nils.
+ intros i. apply Hf_l1'_nil with (i := S i).
+ specialize (Hf_l1'_nil 0 _ _ eq_refl). simpl in *.
intros ? ? ? ? ? Heq ?.
rewrite Heq in *.
apply ListPairDP_body_spec with (l1' := map snd f_l1'_nils); eauto.
Qed.
Corollary ListPairDP_spec l1 l2 :
l1 = map snd f_l1_nils ->
l2 = map snd f_nil_l2s ->
R l1 l2 ListPairDP.
Proof.
intros.
subst.
apply ListPairDP_aux_spec with (P := R (map snd f_l1_nils) (map snd f_nil_l2s)); eauto.
Qed.
End ListPairDP.
Section LCS.
Variable X : Set.
Hypotheses X_eq_dec : forall x y : X, { x = y } + { x <> y }.
Inductive subseq : list X -> list X -> Prop :=
| subsq_nil : subseq nil nil
| subseq_skip x l1 l2 :
subseq l1 l2 ->
subseq l1 (x :: l2)
| subseq_common x l1 l2 :
subseq l1 l2 ->
subseq (x :: l1) (x :: l2).
Hint Constructors subseq.
Lemma subseq_nil l : subseq nil l.
Proof. induction l; eauto. Qed.
Lemma subseq_tl l l2 :
subseq l l2 ->
forall x l1, l = x :: l1 ->
subseq l1 l2.
Proof. induction 1; inversion 1; subst; eauto. Qed.
Hint Resolve subseq_nil subseq_tl.
Definition LCS_aux l1 l2 :=
ListPairDP _ _ (0, nil)
(map (pair (0, nil)) l2)
(map (pair (0, nil)) l1)
(fun x y (f_l1'_l2' f_l1_l2' f_l1'_l2 : _ * _) =>
if X_eq_dec x y then
let (n, s) := f_l1'_l2' in (S n, x :: s)
else
let (n1, s1) := f_l1'_l2 in
let (n2, s2) := f_l1_l2' in
if le_ge_dec n1 n2 then (n2, s2) else (n1, s1)).
Definition LCS l1 l2 := snd (LCS_aux l1 l2).
Lemma LCS_aux_subseq l1 l2 :
subseq (snd (LCS_aux l1 l2)) l1 /\ subseq (snd (LCS_aux l1 l2)) l2.
Proof.
refine (ListPairDP_spec _ _ _ _ _ _ (fun l1 l2 p => subseq (snd p) l1 /\ subseq (snd p) l2) _ _ _ _ _ _ _ _);
repeat rewrite map_map, map_id;
simpl;
eauto.
- intros ? ? ? HIn.
apply nth_error_In in HIn.
apply in_map_iff in HIn.
destruct HIn as [ ? [ Heq ]].
inversion Heq. subst. eauto.
- intros ? ? ? HIn.
apply nth_error_In in HIn.
apply in_map_iff in HIn.
destruct HIn as [ ? [ Heq ]].
inversion Heq. subst. eauto.
- intros x ? y ? [ ? s ] [ n1 s1 ] [ n2 s2 ] [ ? ? ] [ ? ? ] [ ? ? ].
destruct (X_eq_dec x y); subst; simpl; eauto.
destruct (le_ge_dec n2 n1); eauto.
Qed.
Corollary LCS_subseq l1 l2 : subseq (LCS l1 l2) l1 /\ subseq (LCS l1 l2) l2.
Proof. apply LCS_aux_subseq. Qed.
Lemma LCS_aux_longest l1 l2 :
let (n, s) := LCS_aux l1 l2 in
n = length s /\ (forall l, subseq l l1 -> subseq l l2 -> length l <= length s).
Proof.
Local Hint Resolve le_n_S.
refine (ListPairDP_spec _ _ _ _ _ _ (fun l1 l2 (p : _ * _) =>
let (n, s) := p in
n = length s /\ (forall l, subseq l l1 -> subseq l l2 -> length l <= length s)) _ _ _ _ _ _ _ _);
repeat rewrite map_map, map_id;
simpl;
eauto.
- split; eauto. inversion 1; simpl; eauto.
- intros ? ? ? HIn.
apply nth_error_In in HIn.
apply in_map_iff in HIn.
destruct HIn as [ ? [ Heq ] ].
inversion Heq. subst. simpl.
split; eauto.
inversion 1. simpl. eauto.
- intros ? ? ? HIn.
apply nth_error_In in HIn.
apply in_map_iff in HIn.
destruct HIn as [ ? [ Heq ] ].
inversion Heq. subst. simpl.
split; eauto.
inversion 2. simpl. eauto.
- intros x ? y ? [ ? ? ] [ n1 ? ] [ n2 ? ] [ ? ? ] [ ? IH2 ] [ ? IH3 ].
destruct (X_eq_dec x y);
[ subst | destruct (le_ge_dec n2 n1) ]; simpl;
split; eauto;
intros ? Hsubseq1 Hsubseq2;
inversion Hsubseq1 as [ | ? ? ? Hsubseq1' | ]; subst;
inversion Hsubseq2 as [ | ? ? ? Hsubseq2' | ]; subst;
try specialize (IH2 _ Hsubseq1 Hsubseq2');
try specialize (IH3 _ Hsubseq1' Hsubseq2);
simpl in *;
(congruence || omega || eauto).
Qed.
Corollary LCS_longest l1 l2 l :
subseq l l1 ->
subseq l l2 ->
length l <= length (LCS l1 l2).
Proof.
unfold LCS.
specialize (LCS_aux_longest l1 l2).
destruct (LCS_aux l1 l2).
intros [ ? ? ].
eauto.
Qed.
End LCS.
Require Import List Omega.
Section LCS.
Variable X : Set.
Hypotheses X_eq_dec : forall x y : X, { x = y } + { x <> y }.
Inductive subseq : list X -> list X -> Prop :=
| subsq_nil : subseq nil nil
| subseq_skip x l1 l2 :
subseq l1 l2 ->
subseq l1 (x :: l2)
| subseq_common x l1 l2 :
subseq l1 l2 ->
subseq (x :: l1) (x :: l2).
Hint Constructors subseq.
Lemma subseq_nil l : subseq nil l.
Proof. induction l; eauto. Qed.
Lemma subseq_tl l l2 :
subseq l l2 ->
forall x l1, l = x :: l1 ->
subseq l1 l2.
Proof. induction 1; inversion 1; subst; eauto. Qed.
Hint Resolve subseq_nil subseq_tl.
Fixpoint LCS_body LCS x l2 :=
match l2 with
| nil => nil
| y :: l2' =>
if X_eq_dec x y then x :: LCS l2'
else
let s1 := LCS (y :: l2') in
let s2 := LCS_body LCS x l2' in
if le_ge_dec (length s1) (length s2) then s2 else s1
end.
Fixpoint LCS l1 l2 :=
match l1 with
| nil => nil
| x :: l1' => LCS_body (LCS l1') x l2
end.
Lemma LCS_rect (P : list X -> list X -> Type) (Q : X -> list X -> list X -> Type) :
(forall l2, P nil l2) ->
(forall x l1 l2, Q x l1 l2 -> P (x :: l1) l2) ->
(forall x l1, Q x l1 nil) ->
(forall x l1 y l2, P l1 l2 -> P l1 (y :: l2) -> Q x l1 l2 -> Q x l1 (y :: l2)) ->
forall l1 l2, P l1 l2.
Proof.
intros ? IH2 ? ? l1.
induction l1; intros l2; eauto.
- apply IH2.
induction l2; eauto.
Qed.
Theorem LCS_subseq : forall l1 l2, subseq (LCS l1 l2) l1 /\ subseq (LCS l1 l2) l2.
Proof.
refine (LCS_rect _
(fun x l1 l2 =>
subseq (LCS_body (LCS l1) x l2) (x :: l1) /\ subseq (LCS_body (LCS l1) x l2) l2) _ _ _ _); simpl; eauto.
intros x l1 y l2 [? ?] [? ?] [? ?].
destruct (X_eq_dec x y); subst; eauto.
destruct (le_ge_dec (length (LCS l1 (y :: l2))) (length (LCS_body (LCS l1) x l2))); eauto.
Qed.
Theorem LCS_longest : forall l1 l2 l,
subseq l l1 ->
subseq l l2 ->
length l <= length (LCS l1 l2).
Proof.
Local Hint Resolve le_n_S.
refine (LCS_rect _
(fun x l1 l2 => forall l,
subseq l (x :: l1) ->
subseq l l2 ->
length l <= length (LCS_body (LCS l1) x l2)) _ _ _ _); simpl; eauto.
- inversion 1; simpl; eauto.
- inversion 2; simpl; eauto.
- intros x l1' y l2' ? IH2 IH3.
destruct (X_eq_dec x y);
[ subst | destruct (le_ge_dec (length (LCS l1' (y :: l2'))) (length (LCS_body (LCS l1') x l2'))) ];
intros ? Hsubseq1 Hsubseq2;
inversion Hsubseq1 as [ | ? ? ? Hsubseq1' | ]; subst;
inversion Hsubseq2 as [ | ? ? ? Hsubseq2' | ]; subst;
try specialize (IH2 _ Hsubseq1' Hsubseq2);
try specialize (IH3 _ Hsubseq1 Hsubseq2');
simpl in *;
(congruence || omega || eauto).
Qed.
End LCS.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment