Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
R Simple Back Test Script - 30min ES
# Back test simple moving average strategy
# Use 30min ES Data
out_results <- data.frame()
for (i in 1:100) {
start_time <- Sys.time()
# Read Data
df <- read.csv("C:/Users/Andrew.Bannerman/Desktop/Julia/", header=TRUE,stringsAsFactors = FALSE)
# Make date time column
df$Date_Time <- paste(df$Date,df$Time)
df$Date_Time <- mdy_hm(df$Date_Time)
# Create Sma
df$sma_200 <- SMA(df$Close,200)
# Create long signal
df$Long_Signal <- ifelse(df$Close > df$sma_200,1,0)
df$Long_Signal <- dplyr::lag(df$Long_Signal,1) # lag forward avoid look ahead bias
# For loop for returns
# Slow loops are slow in R was demonstration purposes only!
#out <- vector()
#for (j in 2:nrow(df)){
#out[j] = df$Close[j]/df$Close[j-2+1] - 1.0
#df <- cbind(df,out)
#colnames(df)[12] = "Close_Ret"
# Use data.table to calculate returns (WAY faster :) )
df = data.table(df)
df[, Close_Ret := (Close / shift(Close))-1]
# Subset Data To start after SMA creation
df = df[201:nrow(df),]
# Calculate startegy Returns
df$Sig_Rets <- df$Long_Signal * df$Close_Ret
df[] <- 0
# Calculate Cumulative Returns
# Buy and hold and Strategy returns
df$Signal_cum_ret <- cumprod(1+df$Sig_Rets)-1
df$BH_cum_ret <- cumprod(1+df$Close_Ret)-1
end_time <- Sys.time()
total_time <- end_time - start_time
temp <- total_time
out_results <- rbind(out_results, temp)
colnames(out_results)[1] <- "Time"
sum(out_results$Time) / 195.793
# Plot Results
plot(df$Signal_cum_ret,type="l",main="R 200SMA Back Test Result")

This comment has been minimized.

Copy link

@joshuaulrich joshuaulrich commented Apr 8, 2018

Can you put the "" file somewhere public? You might want to apply a random (but monotonic) transformation, so you don't accidentally violate any terms of use.


This comment has been minimized.

Copy link
Owner Author

@flare9x flare9x commented Apr 11, 2018

Hi Joshua

I could host it on a dropbox. It is data from tradestation. Am I even allowed to share it publicly?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment