Skip to content

Instantly share code, notes, and snippets.

@fogleman
Last active March 8, 2021 22:31
Show Gist options
  • Star 4 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
  • Save fogleman/7e903130aebf724155e2e0b349e7f1d6 to your computer and use it in GitHub Desktop.
Save fogleman/7e903130aebf724155e2e0b349e7f1d6 to your computer and use it in GitHub Desktop.
Gray-Scott Reaction-Diffusion with OpenCL
#define CL_SILENCE_DEPRECATION
// #if defined(__APPLE__) || defined(__MACOSX)
// #include <OpenCL/cl.hpp>
// #else
// #include <CL/cl.hpp>
// #endif
#include "cl.hpp"
#include <fstream>
#include <iostream>
const int iterations = 10000;
const int w = 1920;
const int h = 1080;
const float centerWeight = -1;
const float adjacentWeight = 0.2;
const float diagonalWeight = 0.05;
const float feedRate = 0.06;
const float killRate = 0.062;
const float diffusionRateA = 8;
const float diffusionRateB = 4;
const float timestep = 0.125;
const std::string kernelSource(R"(
__kernel void grayScott(
global float *A0,
global float *B0,
global float *A1,
global float *B1,
const int w,
const int h,
const float centerWeight,
const float adjacentWeight,
const float diagonalWeight,
const float feedRate,
const float killRate,
const float diffusionRateA,
const float diffusionRateB,
const float timestep,
const int bufferIndex)
{
const int i = get_global_id(0);
const int x = i % w;
const int y = i / w;
const int xp = x == 0 ? w - 1 : x - 1;
const int xn = x == w - 1 ? 0 : x + 1;
const int yp = y == 0 ? h - 1 : y - 1;
const int yn = y == h - 1 ? 0 : y + 1;
global float *A = bufferIndex == 0 ? A0 : A1;
global float *B = bufferIndex == 0 ? B0 : B1;
global float *newA = bufferIndex == 0 ? A1 : A0;
global float *newB = bufferIndex == 0 ? B1 : B0;
const float a = A[i];
const float b = B[i];
float dda = 0;
dda += a * centerWeight;
dda += A[yp * w + xp] * diagonalWeight;
dda += A[yp * w + xn] * diagonalWeight;
dda += A[yn * w + xp] * diagonalWeight;
dda += A[yn * w + xn] * diagonalWeight;
dda += A[yp * w + x] * adjacentWeight;
dda += A[yn * w + x] * adjacentWeight;
dda += A[y * w + xp] * adjacentWeight;
dda += A[y * w + xn] * adjacentWeight;
float ddb = 0;
ddb += b * centerWeight;
ddb += B[yp * w + xp] * diagonalWeight;
ddb += B[yp * w + xn] * diagonalWeight;
ddb += B[yn * w + xp] * diagonalWeight;
ddb += B[yn * w + xn] * diagonalWeight;
ddb += B[yp * w + x] * adjacentWeight;
ddb += B[yn * w + x] * adjacentWeight;
ddb += B[y * w + xp] * adjacentWeight;
ddb += B[y * w + xn] * adjacentWeight;
const float da =
diffusionRateA * dda - a * b * b + feedRate * (1 - a);
const float db =
diffusionRateB * ddb + a * b * b - (feedRate + killRate) * b;
newA[i] = a + da * timestep;
newB[i] = b + db * timestep;
}
)");
void SavePPM(
const std::string &path,
const int width,
const int height,
const std::vector<float> &data)
{
std::ofstream out(path);
out << "P3\n";
out << width << " " << height << "\n";
out << 255 << "\n";
int i = 0;
const float lo = *std::min_element(data.begin(), data.end());
const float hi = *std::max_element(data.begin(), data.end());
std::cout << lo << ", " << hi << std::endl;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
const float v = data[i++];
const float t = (v - lo) / (hi - lo);
const int r = t * 255;
out << r << " " << r << " " << r << "\n";
}
}
out.close();
}
int main() {
// get platform
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
if (platforms.empty()) {
return -1;
}
cl::Platform platform = platforms[0];
std::cout << platform.getInfo<CL_PLATFORM_NAME>() << std::endl;
// get device
std::vector<cl::Device> devices;
platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
if (devices.empty()) {
return -1;
}
cl::Device device = devices[0];
std::cout << device.getInfo<CL_DEVICE_NAME>() << std::endl;
// compile program
cl::Context context({device});
cl::Program::Sources sources;
sources.push_back({kernelSource.c_str(), kernelSource.size()});
cl::Program program(context, sources);
if (program.build({device}) != CL_SUCCESS) {
std::cout
<< program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device)
<< std::endl;
return -1;
}
cl::Kernel kernel(program, "grayScott");
// create & initialize cpu-side buffers
std::vector<float> A(w * h, 1);
std::vector<float> B(w * h, 0);
for (int i = 0; i < B.size(); i++) {
if (rand() % 10 == 0) {
B[i] = 1;
}
}
// make buffers
const size_t numBytes = sizeof(A.front()) * A.size();
cl::Buffer bufferA0(context, CL_MEM_READ_WRITE, numBytes);
cl::Buffer bufferB0(context, CL_MEM_READ_WRITE, numBytes);
cl::Buffer bufferA1(context, CL_MEM_READ_WRITE, numBytes);
cl::Buffer bufferB1(context, CL_MEM_READ_WRITE, numBytes);
// set arguments
kernel.setArg(0, bufferA0);
kernel.setArg(1, bufferB0);
kernel.setArg(2, bufferA1);
kernel.setArg(3, bufferB1);
kernel.setArg(4, w);
kernel.setArg(5, h);
kernel.setArg(6, centerWeight);
kernel.setArg(7, adjacentWeight);
kernel.setArg(8, diagonalWeight);
kernel.setArg(9, feedRate);
kernel.setArg(10, killRate);
kernel.setArg(11, diffusionRateA);
kernel.setArg(12, diffusionRateB);
kernel.setArg(13, timestep);
// copy intial buffers over
cl::CommandQueue queue(context, device);
queue.enqueueWriteBuffer(bufferA0, CL_TRUE, 0, numBytes, A.data());
queue.enqueueWriteBuffer(bufferB0, CL_TRUE, 0, numBytes, B.data());
// run N iterations
for (int i = 0; i < iterations; i++) {
kernel.setArg(14, i % 2);
queue.enqueueNDRangeKernel(
kernel, cl::NullRange, cl::NDRange(A.size()), cl::NullRange);
queue.finish();
}
// read out final buffers
queue.enqueueReadBuffer(bufferA0, CL_TRUE, 0, numBytes, A.data());
queue.enqueueReadBuffer(bufferB0, CL_TRUE, 0, numBytes, B.data());
queue.finish();
// write image
SavePPM("out.ppm", w, h, B);
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment