Skip to content

Instantly share code, notes, and snippets.

@frankhale
Forked from ryancollingwood/astar.py
Created March 28, 2021 00:41
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save frankhale/58ebcaf6288c4e21af983e6ac0b6793e to your computer and use it in GitHub Desktop.
Save frankhale/58ebcaf6288c4e21af983e6ac0b6793e to your computer and use it in GitHub Desktop.
# Credit for this: Nicholas Swift
# as found at https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
from warnings import warn
import heapq
class Node:
"""
A node class for A* Pathfinding
"""
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def __repr__(self):
return f"{self.position} - g: {self.g} h: {self.h} f: {self.f}"
# defining less than for purposes of heap queue
def __lt__(self, other):
return self.f < other.f
# defining greater than for purposes of heap queue
def __gt__(self, other):
return self.f > other.f
def return_path(current_node):
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path
def astar(maze, start, end, allow_diagonal_movement = False):
"""
Returns a list of tuples as a path from the given start to the given end in the given maze
:param maze:
:param start:
:param end:
:return:
"""
# Create start and end node
start_node = Node(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = Node(None, end)
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Heapify the open_list and Add the start node
heapq.heapify(open_list)
heapq.heappush(open_list, start_node)
# Adding a stop condition
outer_iterations = 0
max_iterations = (len(maze[0]) * len(maze) // 2)
# what squares do we search
adjacent_squares = ((0, -1), (0, 1), (-1, 0), (1, 0),)
if allow_diagonal_movement:
adjacent_squares = ((0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1),)
# Loop until you find the end
while len(open_list) > 0:
outer_iterations += 1
if outer_iterations > max_iterations:
# if we hit this point return the path such as it is
# it will not contain the destination
warn("giving up on pathfinding too many iterations")
return return_path(current_node)
# Get the current node
current_node = heapq.heappop(open_list)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
return return_path(current_node)
# Generate children
children = []
for new_position in adjacent_squares: # Adjacent squares
# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if maze[node_position[0]][node_position[1]] != 0:
continue
# Create new node
new_node = Node(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
if len([closed_child for closed_child in closed_list if closed_child == child]) > 0:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
if len([open_node for open_node in open_list if child.position == open_node.position and child.g > open_node.g]) > 0:
continue
# Add the child to the open list
heapq.heappush(open_list, child)
warn("Couldn't get a path to destination")
return None
def example(print_maze = True):
maze = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,] * 2,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,] * 2,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,] * 2,
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,] * 2,
[0,0,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,] * 2,
[0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,] * 2,
[0,0,0,1,0,1,1,1,1,0,1,1,0,0,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,] * 2,
[0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,] * 2,
[0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,] * 2,
[0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,1,0,1,1,] * 2,
[0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,] * 2,
[0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,1,0,] * 2,
[0,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,0,] * 2,
[0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,] * 2,
[0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,] * 2,
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,] * 2,]
start = (0, 0)
end = (len(maze)-1, len(maze[0])-1)
path = astar(maze, start, end)
if print_maze:
for step in path:
maze[step[0]][step[1]] = 2
for row in maze:
line = []
for col in row:
if col == 1:
line.append("\u2588")
elif col == 0:
line.append(" ")
elif col == 2:
line.append(".")
print("".join(line))
print(path)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment