Skip to content

Instantly share code, notes, and snippets.

@fumiakiy
Created July 3, 2019 22:17
Show Gist options
  • Save fumiakiy/a86a834352c1c2c5a8305e46b3a5e751 to your computer and use it in GitHub Desktop.
Save fumiakiy/a86a834352c1c2c5a8305e46b3a5e751 to your computer and use it in GitHub Desktop.
import re
import numpy as np
import tensorflow as tf
e = [
3080192,
3801088,
3702784,
4325376,
4587520,
4784128,
4620288,
4653056,
4390912,
4096000,
3932160,
3899392,
4390912,
4423680,
4259840,
5308416,
5275648,
5079040,
5013504,
4259840,
4554752,
5472256,
6946816,
7274496,
6717440,
6881280,
5308416,
4751360,
5111808,
5013504,
5832704,
5996544,
7077888,
6356992,
5931008,
5341184,
4390912,
2654208,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
y = [
5931008,
5308416,
5013504,
3473408,
3637248,
3964928,
3342336,
3178496,
3899392,
4194304,
4096000,
3604480,
3768320,
4128768,
4259840,
3735552,
3276800,
4554752,
4390912,
4194304,
3932160,
4227072,
4325376,
3997696,
3506176,
3014656,
2752512,
655360,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
# Load TFLite model and allocate tensors.
interpreter = tf.contrib.lite.Interpreter(model_path="model1.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
# Test model on random input data.
input_shape = input_details[0]['shape']
# input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
# input_data = e
# input_data = [e]
# input_data = [e[0]]
# for i in (range(len(y) - 1)):
# interpreter.set_tensor(input_details[i]['index'], [y[i]])
indices = [0] * 51
for detail in input_details:
vindex = 0
m = re.match(r'Const_(\d+)', detail['name'])
if (m is None):
vindex = 0
else:
vindex = int(m.group(1))
indices[vindex] = detail['index']
for i in range(len(e)-1):
interpreter.set_tensor(indices[i], [e[i]])
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment