Skip to content

Instantly share code, notes, and snippets.

@fyang1024
Created July 29, 2018 10:02
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save fyang1024/4fa7b874cdce16d8fe837f4dd395ac69 to your computer and use it in GitHub Desktop.
Save fyang1024/4fa7b874cdce16d8fe837f4dd395ac69 to your computer and use it in GitHub Desktop.
PetCoin
pragma solidity ^0.4.24;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @title Owned
*/
contract Owned {
event OwnershipTransferred(address indexed _from, address indexed _to);
address public owner;
address public newOwner;
modifier onlyOwner {
require(msg.sender == owner);
_;
}
constructor()
public
{
owner = msg.sender;
}
function transferOwnership(address _newOwner)
public
onlyOwner
{
newOwner = _newOwner;
}
function acceptOwnership()
public
{
require(msg.sender == newOwner);
owner = newOwner;
newOwner = address(0);
emit OwnershipTransferred(owner, newOwner);
}
}
pragma solidity ^0.4.24;
import "./StandardToken.sol";
import "./Owned.sol";
import "./SafeMath.sol";
/**
* @title The PetCoin Token contract.
*/
contract PetCoin is StandardToken, Owned {
using SafeMath for uint256;
// Token metadata
string public constant name = "Petcoin";
string public constant symbol = "PETC";
uint256 public constant decimals = 18;
// Token supply breakdown
uint256 public constant initialSupply = 2340 * (10**6) * 10**decimals; // 2.34 billion
uint256 public constant stageOneSupply = (10**5) * 10**decimals; // 100,000 tokens for ICO stage 1
uint256 public constant stageTwoSupply = (10**6) * 10**decimals; // 1,000,000 tokens for ICO stage 2
uint256 public constant stageThreeSupply = (10**7) * 10**decimals; // 10,000,000 tokens for ICO stage 3
// Initial Token holder addresses.
// one billion token holders
address public constant appWallet = 0x9F6899364610B96D7718Fe3c03A6BD1Deb8623CE;
address public constant genWallet = 0x530E6B9A17e9AbB77CF4E125b99Bf5D5CAD69942;
// one hundred million token holders
address public constant ceoWallet = 0x388Ed3f7Aa1C4461460197FcCE5cfEf84D562c6A;
address public constant cooWallet = 0xa2c59e6a91B4E502CF8C95A61F50D3aB1AB30cBA;
address public constant devWallet = 0x7D2ea29E2d4A95f4725f52B941c518C15eAE3c64;
// the rest token holder
address public constant poolWallet = 0x7e75fe6b73993D9Be9cb975364ec70Ee2C22c13A;
// mint configuration
uint256 public constant yearlyMintCap = (10*7) * 10*decimals; //10,000,000 tokens each year
uint16 public mintStartYear = 2019;
uint16 public mintEndYear = 2118;
mapping (uint16 => bool) minted;
constructor()
public
{
totalSupply_ = initialSupply.add(stageOneSupply).add(stageTwoSupply).add(stageThreeSupply);
uint256 oneBillion = (10**9) * 10**decimals;
uint256 oneHundredMillion = 100 * (10**6) * 10**decimals;
balances[appWallet] = oneBillion;
emit Transfer(address(0), appWallet, oneBillion);
balances[genWallet] = oneBillion;
emit Transfer(address(0), genWallet, oneBillion);
balances[ceoWallet] = oneHundredMillion;
emit Transfer(address(0), ceoWallet, oneHundredMillion);
balances[cooWallet] = oneHundredMillion;
emit Transfer(address(0), cooWallet, oneHundredMillion);
balances[devWallet] = oneHundredMillion;
emit Transfer(address(0), devWallet, oneHundredMillion);
balances[poolWallet] = initialSupply.sub(balances[appWallet])
.sub(balances[genWallet])
.sub(balances[ceoWallet])
.sub(balances[cooWallet])
.sub(balances[devWallet]);
emit Transfer(address(0), poolWallet, balances[poolWallet]);
balances[msg.sender] = stageOneSupply.add(stageTwoSupply).add(stageThreeSupply);
emit Transfer(address(0), msg.sender, balances[msg.sender]);
}
event Mint(address indexed to, uint256 amount);
/**
* @dev Function to mint tokens
* @param _to The address that will receive the minted tokens.
* @return A boolean that indicates if the operation was successful.
*/
function mint(
address _to
)
onlyOwner
external
returns (bool)
{
uint16 year = _getYear(now);
require (year >= mintStartYear && year <= mintEndYear && !minted[year]);
require (_to != address(0));
totalSupply_ = totalSupply_.add(yearlyMintCap);
balances[_to] = balances[_to].add(yearlyMintCap);
minted[year] = true;
emit Mint(_to, yearlyMintCap);
emit Transfer(address(0), _to, yearlyMintCap);
return true;
}
function _getYear(uint256 timestamp)
internal
pure
returns (uint16)
{
uint16 ORIGIN_YEAR = 1970;
uint256 YEAR_IN_SECONDS = 31536000;
uint256 LEAP_YEAR_IN_SECONDS = 31622400;
uint secondsAccountedFor = 0;
uint16 year;
uint numLeapYears;
// Year
year = uint16(ORIGIN_YEAR + timestamp / YEAR_IN_SECONDS);
numLeapYears = _leapYearsBefore(year) - _leapYearsBefore(ORIGIN_YEAR);
secondsAccountedFor += LEAP_YEAR_IN_SECONDS * numLeapYears;
secondsAccountedFor += YEAR_IN_SECONDS * (year - ORIGIN_YEAR - numLeapYears);
while (secondsAccountedFor > timestamp) {
if (_isLeapYear(uint16(year - 1))) {
secondsAccountedFor -= LEAP_YEAR_IN_SECONDS;
}
else {
secondsAccountedFor -= YEAR_IN_SECONDS;
}
year -= 1;
}
return year;
}
function _isLeapYear(uint16 year)
internal
pure
returns (bool)
{
if (year % 4 != 0) {
return false;
}
if (year % 100 != 0) {
return true;
}
if (year % 400 != 0) {
return false;
}
return true;
}
function _leapYearsBefore(uint year)
internal
pure
returns (uint)
{
year -= 1;
return year / 4 - year / 100 + year / 400;
}
}
pragma solidity ^0.4.24;
import "./PetCoin.sol";
import "./SafeMath.sol";
import "./SafeERC20.sol";
/**
* @title PetCoinCrowdSale
* @dev PetCoinCrowdSale is the contract for managing petcoin crowdsale,
* allowing investors to purchase petcoin tokens with ether.
*/
contract PetCoinCrowdSale is Owned {
using SafeMath for uint256;
using SafeERC20 for PetCoin;
// Conversion rates
uint256 public stageOneRate = 4500; // 1 ETH = 4500 PETC
uint256 public stageTwoRate = 3000; // 1 ETH = 3000 PETC
uint256 public stageThreeRate = 2557; // 1 ETH = 2557 PETC
// The token being sold
PetCoin public token;
// Address where funds are collected
address public wallet;
// Amount of wei raised
uint256 public weiRaised;
// Token Sale State Definitions
enum TokenSaleState { NOT_STARTED, STAGE_ONE, STAGE_TWO, STAGE_THREE, COMPLETED }
TokenSaleState public state;
struct Stage {
uint256 rate;
uint256 remaining;
}
// Enum as mapping key not supported by Solidity yet
mapping(uint256 => Stage) public stages;
/**
* Event for token purchase logging
* @param purchaser who paid for the tokens
* @param value weis paid for purchase
* @param amount amount of tokens purchased
*/
event TokenPurchase(
address indexed purchaser,
uint256 value,
uint256 amount
);
/**
* Event for refund in case remaining tokens are not sufficient
* @param purchaser who paid for the tokens
* @param value weis refunded
*/
event Refund(
address indexed purchaser,
uint256 value
);
/**
* Event for move stage
* @param oldState old state
* @param newState new state
*/
event MoveStage(
TokenSaleState oldState,
TokenSaleState newState
);
/**
* Event for rates update
* @param who updated the rates
* @param stageOneRate new stageOneRate
* @param stageTwoRate new stageTwoRate
* @param stageThreeRate new stageThreeRate
*/
event RatesUpdate(
address indexed who,
uint256 stageOneRate,
uint256 stageTwoRate,
uint256 stageThreeRate
);
/**
* @param _token Address of the token being sold
* @param _wallet Address where collected funds will be forwarded to
*/
constructor(PetCoin _token, address _wallet)
public
{
require(_token != address(0));
require(_wallet != address(0));
token = _token;
wallet = _wallet;
state = TokenSaleState.NOT_STARTED;
stages[uint256(TokenSaleState.STAGE_ONE)] = Stage(stageOneRate, token.stageOneSupply());
stages[uint256(TokenSaleState.STAGE_TWO)] = Stage(stageTwoRate, token.stageTwoSupply());
stages[uint256(TokenSaleState.STAGE_THREE)] = Stage(stageThreeRate, token.stageThreeSupply());
}
// Modifiers
modifier notStarted() {
require (state == TokenSaleState.NOT_STARTED);
_;
}
modifier stageOne() {
require (state == TokenSaleState.STAGE_ONE);
_;
}
modifier stageTwo() {
require (state == TokenSaleState.STAGE_TWO);
_;
}
modifier stageThree() {
require (state == TokenSaleState.STAGE_THREE);
_;
}
modifier completed() {
require (state == TokenSaleState.COMPLETED);
_;
}
modifier saleInProgress() {
require (state == TokenSaleState.STAGE_ONE || state == TokenSaleState.STAGE_TWO || state == TokenSaleState.STAGE_THREE);
_;
}
// -----------------------------------------
// Crowdsale external interface
// -----------------------------------------
function kickoff()
external
onlyOwner
notStarted
{
_moveStage();
}
function updateRates(uint256 _stageOneRate, uint256 _stageTwoRate, uint256 _stageThreeRate)
external
onlyOwner
{
stageOneRate = _stageOneRate;
stageTwoRate = _stageTwoRate;
stageThreeRate = _stageThreeRate;
stages[uint256(TokenSaleState.STAGE_ONE)].rate = stageOneRate;
stages[uint256(TokenSaleState.STAGE_TWO)].rate = stageTwoRate;
stages[uint256(TokenSaleState.STAGE_THREE)].rate = stageThreeRate;
emit RatesUpdate(msg.sender, stageOneRate, stageTwoRate, stageThreeRate);
}
/**
* @dev fallback function ***DO NOT OVERRIDE***
*/
function ()
external
payable
saleInProgress
{
require(stages[uint256(state)].rate > 0);
require(stages[uint256(state)].remaining > 0);
require(msg.value > 0);
uint256 weiAmount = msg.value;
uint256 refund = 0;
// calculate token amount to be created
uint256 tokens = weiAmount.mul(stages[uint256(state)].rate);
if (tokens > stages[uint256(state)].remaining) {
// calculate wei needed to purchase the remaining tokens
tokens = stages[uint256(state)].remaining;
weiAmount = tokens.div(stages[uint256(state)].rate);
refund = msg.value - weiAmount;
}
// update state
weiRaised = weiRaised.add(weiAmount);
emit TokenPurchase(
msg.sender,
weiAmount,
tokens
);
// update remaining of the stage
stages[uint256(state)].remaining -= tokens;
assert(stages[uint256(state)].remaining >= 0);
if (stages[uint256(state)].remaining == 0) {
_moveStage();
}
// transfer tokens to buyer
token.safeTransfer(msg.sender, tokens);
// forward ETH to the wallet
_forwardFunds(weiAmount);
if (refund > 0) { // refund the purchaser if required
msg.sender.transfer(refund);
emit Refund(
msg.sender,
refund
);
}
}
// -----------------------------------------
// Internal interface (extensible)
// -----------------------------------------
function _moveStage()
internal
{
TokenSaleState oldState = state;
if (state == TokenSaleState.NOT_STARTED) {
state = TokenSaleState.STAGE_ONE;
} else if (state == TokenSaleState.STAGE_ONE) {
state = TokenSaleState.STAGE_TWO;
} else if (state == TokenSaleState.STAGE_TWO) {
state = TokenSaleState.STAGE_THREE;
} else if (state == TokenSaleState.STAGE_THREE) {
state = TokenSaleState.COMPLETED;
}
emit MoveStage(oldState, state);
}
/**
* @dev Determines how ETH is stored/forwarded on purchases.
*/
function _forwardFunds(uint256 weiAmount) internal {
wallet.transfer(weiAmount);
}
}
pragma solidity ^0.4.24;
import "./ERC20.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
function safeTransfer(ERC20 token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 value
)
internal
{
require(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
require(token.approve(spender, value));
}
}
pragma solidity ^0.4.24;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b)
internal
pure
returns (uint256 c)
{
// Gas optimization: this is cheaper than asserting 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
// assert(b > 0); // Solidity automatically throws when dividing by 0
// uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return a / b;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b)
internal
pure
returns (uint256)
{
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b)
internal
pure
returns (uint256 c)
{
c = a + b;
assert(c >= a);
return c;
}
}
pragma solidity ^0.4.24;
import "./ERC20.sol";
import "./SafeMath.sol";
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* https://github.com/ethereum/EIPs/issues/20
* Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20 {
using SafeMath for uint256;
uint256 totalSupply_;
mapping(address => uint256) balances;
mapping(address => mapping(address => uint256)) internal allowed;
/**
* @dev Total number of tokens in existence
*/
function totalSupply()
public
view
returns (uint256)
{
return totalSupply_;
}
/**
* @dev Transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value)
public
returns (bool)
{
require(_value <= balances[msg.sender]);
require(_to != address(0));
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner)
public
view
returns (uint256)
{
return balances[_owner];
}
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value)
public
returns (bool)
{
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
require(_to != address(0));
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value)
public
returns (bool)
{
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _addedValue The amount of tokens to increase the allowance by.
*/
function increaseApproval(address _spender, uint256 _addedValue)
public
returns (bool)
{
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue));
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseApproval(address _spender, uint256 _subtractedValue)
public
returns (bool)
{
uint256 oldValue = allowed[msg.sender][_spender];
if (_subtractedValue >= oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment