Skip to content

Instantly share code, notes, and snippets.

@g-leech g-leech/ffw.py
Created Feb 25, 2018

Embed
What would you like to do?
Dumb linear prediction of "fit to work" judgments for 2014
import numpy as np
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
# Monthly data, Nov-08 to Mar-13
months = np.array(range(0,53))
ffws = np.array([ 17400, 15100, 21000, 19800, 23400, 21800, 22000, 22700, 22900, 20500, 22000, 21500, 20800, 17000, 22100, 21600, 23600, 21100, 20200, 21300, 21300, 19700, 20800, 19000, 19900, 15700, 21900, 20800, 22800, 17000, 17300, 17100, 16700, 16600, 17800, 18100, 18400, 14700, 18500, 16900, 17200, 15200, 16600, 15700, 16500, 16400, 15800, 16900, 15800, 10400, 13600, 10200, 7700 ] )
regr = linear_model.LinearRegression()
regr.fit(months.reshape(-1, 1), ffws)
april2013 = 54 #th month in the dataset
feb2014 = 64 #th month in the dataset
prediction = sum([regr.predict(x) for x in range(april2013, feb2014) ])
# 133,587
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.