Skip to content

Instantly share code, notes, and snippets.

@gabalafou
Last active July 30, 2021 15:53
Show Gist options
  • Save gabalafou/66bfd2f68380ed1a65f248a6cff6f1cb to your computer and use it in GitHub Desktop.
Save gabalafou/66bfd2f68380ed1a65f248a6cff6f1cb to your computer and use it in GitHub Desktop.
Python and NodeJS: Generating a hard-to-guess password using a master password via HMAC-SHA1
Hi Stephan,
I think you may have been asking a question that I wasn’t sure I totally
understood, but I thought you were asking about being able to recreate the
password generation code in other environments. So maybe this clears things up,
maybe it doesn’t, but I think it’s interesting, either way.
If you have Python and NodeJS already installed on your computer, you should be
able to open up a REPL and paste the code snippets below directly into it and
get the same result in each one, which is what I was expecting, but it's neat to
verify. (You might notice a difference of an "=" sign at the end but that's just
base64 padding because a sha1 hash is 160 bits but a base64 character represents
6 bits, so 26 base64 chars, or 156 bits, is too little, but 27 chars, or 162
bits, is too many. The = sign at the end just says to chop off the last 8 bits,
so a 28-char base64 string, or 168 bits, equals 160 once you chop the last 8
bits off.)
I also verified that the library I’m using in my app, which you can find at
http://www.pajhome.org.uk/crypt/md5/sha1.html, generates the same hash as the
other two methods:
b64_hmac_sha1(“opensesame", “google.com") —> "lr+ErV3uFsDPkep/Th7Xqva8Z4M"
Beyond the hmac-sha1 function, there’s a little bit of additional code that runs
in my app that tweaks the generated password to fit the requirements that the
user chooses, but this code is trivial to implement in other languages.
Still, I’m not sure if that’s the question you were asking, and if it isn’t,
then I would genuinely like to know what you were asking, so I can learn from it
:)
-Gabriel
const crypto = require("crypto");
const masterPassword = "opensesame";
const siteTag = "google.com";
const generatedPassword = crypto.createHmac("sha1", masterPassword).update(siteTag).digest("base64");
console.log(generatedPassword);
// Expected result: lr+ErV3uFsDPkep/Th7Xqva8Z4M=
from hashlib import sha1
import hmac
master_password = "opensesame"
site_tag = "google.com"
hashed = hmac.new(master_password, site_tag, sha1)
generated_password = hashed.digest().encode("base64").rstrip("\n")
print generated_password
# Expected result: lr+ErV3uFsDPkep/Th7Xqva8Z4M=
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS 180-1
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
function hex_hmac_sha1(k, d)
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha1(k, d)
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha1(k, d, e)
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/*
* Perform a simple self-test to see if the VM is working
*/
function sha1_vm_test()
{
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
/*
* Calculate the SHA1 of a raw string
*/
function rstr_sha1(s)
{
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
}
/*
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
*/
function rstr_hmac_sha1(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
}
/*
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/*
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/* Append leading zero equivalents */
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/*
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/*
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/*
* Convert an array of big-endian words to a string
*/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
function binb_sha1(x, len)
{
/* append padding */
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
}
/*
* Perform the appropriate triplet combination function for the current
* iteration
*/
function sha1_ft(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
/*
* Determine the appropriate additive constant for the current iteration
*/
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
const masterPassword = "opensesame";
const siteTag = "google.com";
const generatedPassword = b64_hmac_sha1(masterPassword, siteTag);
console.log(generatedPassword);
// Expected result: lr+ErV3uFsDPkep/Th7Xqva8Z4M
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment