Skip to content

Instantly share code, notes, and snippets.

@gabrielflorit
Forked from finiterank/Gender Parity
Created May 31, 2014 04:22

Revisions

  1. gabrielflorit renamed this gist May 31, 2014. 1 changed file with 0 additions and 0 deletions.
    File renamed without changes.
  2. @finiterank finiterank revised this gist May 31, 2014. 1 changed file with 0 additions and 1 deletion.
    1 change: 0 additions & 1 deletion Gender Parity
    Original file line number Diff line number Diff line change
    @@ -2,7 +2,6 @@ library(plyr)
    library(reshape2)
    library(ggplot2)


    edx <- read.csv("data//HMXPC13_DI_v2_5-14-14.csv")
    gender.table <- ddply(edx, .(final_cc_cname_DI, gender), summarise, number = length(userid_DI))
    levels(gender.table$gender) <- c("none", "female", "male", "other")
  3. @finiterank finiterank revised this gist May 31, 2014. 1 changed file with 6 additions and 0 deletions.
    6 changes: 6 additions & 0 deletions Gender Parity
    Original file line number Diff line number Diff line change
    @@ -1,8 +1,14 @@
    library(plyr)
    library(reshape2)
    library(ggplot2)


    edx <- read.csv("data//HMXPC13_DI_v2_5-14-14.csv")
    gender.table <- ddply(edx, .(final_cc_cname_DI, gender), summarise, number = length(userid_DI))
    levels(gender.table$gender) <- c("none", "female", "male", "other")
    gender.table <- dcast(gender.table, final_cc_cname_DI ~ gender, value.var="number")
    gender.table$parity <- gender.table$female / gender.table$male

    ggplot(gender.table, aes(x=parity, y=reorder(final_cc_cname_DI,parity))) +
    geom_point(size=5, shape=15, color="orangered") +
    xlab(expression(frac(Males, Females))) +
  4. @finiterank finiterank created this gist May 31, 2014.
    9 changes: 9 additions & 0 deletions Gender Parity
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,9 @@
    edx <- read.csv("data//HMXPC13_DI_v2_5-14-14.csv")
    gender.table <- ddply(edx, .(final_cc_cname_DI, gender), summarise, number = length(userid_DI))
    levels(gender.table$gender) <- c("none", "female", "male", "other")
    gender.table <- dcast(gender.table, final_cc_cname_DI ~ gender, value.var="number")
    gender.table$parity <- gender.table$female / gender.table$male
    ggplot(gender.table, aes(x=parity, y=reorder(final_cc_cname_DI,parity))) +
    geom_point(size=5, shape=15, color="orangered") +
    xlab(expression(frac(Males, Females))) +
    ylab("Country")