Created
April 17, 2014 11:46
-
-
Save gallais/10976846 to your computer and use it in GitHub Desktop.
Disjunctive normal form
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Disjunctive where | |
open import Data.Product | |
import Data.Bool as 𝔹 | |
open import Data.Bool.Properties | |
open import Data.Nat | |
open import Data.Fin | |
open import Data.Vec hiding ([_]) | |
open import Algebra.Structures | |
module CSR = IsCommutativeSemiring isCommutativeSemiring-∨-∧ | |
module BA = IsBooleanAlgebra isBooleanAlgebra | |
open import Relation.Binary.PropositionalEquality as Eq | |
open ≡-Reasoning | |
data formula (n : ℕ) : Set where | |
[_] : (k : Fin n) → formula n | |
_∧_ _∨_ : (p₁ p₂ : formula n) → formula n | |
data conj (n : ℕ) : Set where | |
[_] : (k : Fin n) → conj n | |
_∧_ : (p₁ p₂ : conj n) → conj n | |
data dnf (n : ℕ) : Set where | |
_∨_ : (p₁ p₂ : dnf n) → dnf n | |
↑_ : (p : conj n) → dnf n | |
↓′ : ∀ {n} (p : conj n) → formula n | |
↓′ [ k ] = [ k ] | |
↓′ (p₁ ∧ p₂) = ↓′ p₁ ∧ ↓′ p₂ | |
↓ : ∀ {n} (p : dnf n) → formula n | |
↓ (p₁ ∨ p₂) = ↓ p₁ ∨ ↓ p₂ | |
↓ (↑ p) = ↓′ p | |
_⟦∧⟧_ : ∀ {n} (p₁ p₂ : dnf n) → dnf n | |
(p₁ ∨ p₂) ⟦∧⟧ p₃ = (p₁ ⟦∧⟧ p₃) ∨ (p₂ ⟦∧⟧ p₃) | |
p₁ ⟦∧⟧ (p₂ ∨ p₃) = (p₁ ⟦∧⟧ p₂) ∨ (p₁ ⟦∧⟧ p₃) | |
(↑ p₁) ⟦∧⟧ (↑ p₂) = ↑ (p₁ ∧ p₂) | |
⟦dnf⟧ : ∀ {n} (p : formula n) → dnf n | |
⟦dnf⟧ [ k ] = ↑ [ k ] | |
⟦dnf⟧ (p₁ ∧ p₂) = ⟦dnf⟧ p₁ ⟦∧⟧ ⟦dnf⟧ p₂ | |
⟦dnf⟧ (p₁ ∨ p₂) = ⟦dnf⟧ p₁ ∨ ⟦dnf⟧ p₂ | |
⟦_⟧_ : ∀ {n} (p : formula n) (ρ : Vec 𝔹.Bool n) → 𝔹.Bool | |
⟦ [ k ] ⟧ ρ = lookup k ρ | |
⟦ p₁ ∧ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ 𝔹.∧ ⟦ p₂ ⟧ ρ | |
⟦ p₁ ∨ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ 𝔹.∨ ⟦ p₂ ⟧ ρ | |
⟦_⟧′_ : ∀ {n} (p : dnf n) (ρ : Vec 𝔹.Bool n) → 𝔹.Bool | |
⟦ p ⟧′ ρ = ⟦ ↓ p ⟧ ρ | |
lemma-⟦∧⟧ : ∀ {n} (p₁ p₂ : dnf n) (ρ : Vec 𝔹.Bool n) → | |
⟦ p₁ ⟧′ ρ 𝔹.∧ ⟦ p₂ ⟧′ ρ ≡ ⟦ p₁ ⟦∧⟧ p₂ ⟧′ ρ | |
lemma-⟦∧⟧ (↑ p₁) (↑ p₂) ρ = Eq.refl | |
lemma-⟦∧⟧ (p₁ ∨ p₂) p₃ ρ = | |
let val₁ = ⟦ p₁ ⟧′ ρ | |
val₂ = ⟦ p₂ ⟧′ ρ | |
val₃ = ⟦ p₃ ⟧′ ρ | |
ih₁₃ = lemma-⟦∧⟧ p₁ p₃ ρ | |
ih₂₃ = lemma-⟦∧⟧ p₂ p₃ ρ | |
in | |
begin | |
(val₁ 𝔹.∨ val₂) 𝔹.∧ val₃ ≡⟨ CSR.distribʳ val₃ val₁ val₂ ⟩ | |
(val₁ 𝔹.∧ val₃) 𝔹.∨ (val₂ 𝔹.∧ val₃) ≡⟨ cong₂ 𝔹._∨_ ih₁₃ ih₂₃ ⟩ | |
⟦ p₁ ⟦∧⟧ p₃ ⟧′ ρ 𝔹.∨ ⟦ p₂ ⟦∧⟧ p₃ ⟧′ ρ | |
∎ | |
lemma-⟦∧⟧ (↑ p₁) (p₂ ∨ p₃) ρ = | |
let val₁ = ⟦ ↑ p₁ ⟧′ ρ | |
val₂ = ⟦ p₂ ⟧′ ρ | |
val₃ = ⟦ p₃ ⟧′ ρ | |
res₁₂ = ⟦ (↑ p₁) ⟦∧⟧ p₂ ⟧′ ρ | |
res₁₃ = ⟦ (↑ p₁) ⟦∧⟧ p₃ ⟧′ ρ | |
ih₁₂ = lemma-⟦∧⟧ (↑ p₁) p₂ ρ | |
ih₁₃ = lemma-⟦∧⟧ (↑ p₁) p₃ ρ | |
in | |
begin | |
val₁ 𝔹.∧ (val₂ 𝔹.∨ val₃) ≡⟨ proj₁ CSR.distrib val₁ val₂ val₃ ⟩ | |
(val₁ 𝔹.∧ val₂) 𝔹.∨ (val₁ 𝔹.∧ val₃) ≡⟨ cong₂ 𝔹._∨_ ih₁₂ ih₁₃ ⟩ | |
res₁₂ 𝔹.∨ res₁₃ | |
∎ | |
lemma : ∀ {n} (p : formula n) (ρ : Vec 𝔹.Bool n) → | |
⟦ p ⟧ ρ ≡ ⟦ ⟦dnf⟧ p ⟧′ ρ | |
lemma [ k ] ρ = Eq.refl | |
lemma (p₁ ∨ p₂) ρ = cong₂ 𝔹._∨_ (lemma p₁ ρ) (lemma p₂ ρ) | |
lemma (p₁ ∧ p₂) ρ = | |
let ih₁ = lemma p₁ ρ | |
ih₂ = lemma p₂ ρ | |
rec₁ = ⟦dnf⟧ p₁ | |
rec₂ = ⟦dnf⟧ p₂ | |
in | |
begin | |
⟦ p₁ ⟧ ρ 𝔹.∧ ⟦ p₂ ⟧ ρ ≡⟨ cong₂ 𝔹._∧_ ih₁ ih₂ ⟩ | |
⟦ rec₁ ⟧′ ρ 𝔹.∧ ⟦ rec₂ ⟧′ ρ ≡⟨ lemma-⟦∧⟧ rec₁ rec₂ ρ ⟩ | |
⟦ rec₁ ⟦∧⟧ rec₂ ⟧′ ρ | |
∎ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment