This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Purpose: Amazon EMR Serverless and Amazon MSK Serverless Demo | |
# Reads messages from Kafka topicA and write aggregated messages to CSV file in Amazon S3 | |
# Author: Gary A. Stafford | |
# Date: 2022-07-27 | |
# Note: Requires --bootstrap_servers and --s3_bucket arguments | |
import argparse | |
import pyspark.sql.functions as F | |
from pyspark.sql import SparkSession | |
from pyspark.sql.types import StructField, StructType, IntegerType, \ | |
StringType, FloatType, TimestampType | |
from pyspark.sql.window import Window | |
def main(): | |
args = parse_args() | |
spark = SparkSession \ | |
.builder \ | |
.appName("02-example-csv-s3") \ | |
.getOrCreate() | |
spark.sparkContext.setLogLevel("INFO") | |
df_sales = read_from_kafka(spark, args) | |
summarize_sales(df_sales, args) | |
def read_from_kafka(spark, args): | |
options_read = { | |
"kafka.bootstrap.servers": | |
args.bootstrap_servers, | |
"subscribe": | |
args.read_topic, | |
"startingOffsets": | |
"earliest", | |
"endingOffsets": | |
"latest", | |
"kafka.security.protocol": | |
"SASL_SSL", | |
"kafka.sasl.mechanism": | |
"AWS_MSK_IAM", | |
"kafka.sasl.jaas.config": | |
"software.amazon.msk.auth.iam.IAMLoginModule required;", | |
"kafka.sasl.client.callback.handler.class": | |
"software.amazon.msk.auth.iam.IAMClientCallbackHandler" | |
} | |
df_sales = spark \ | |
.read \ | |
.format("kafka") \ | |
.options(**options_read) \ | |
.load() | |
return df_sales | |
def summarize_sales(df_sales, args): | |
schema = StructType([ | |
StructField("payment_id", IntegerType(), False), | |
StructField("customer_id", IntegerType(), False), | |
StructField("amount", FloatType(), False), | |
StructField("payment_date", TimestampType(), False), | |
StructField("city", StringType(), True), | |
StructField("district", StringType(), True), | |
StructField("country", StringType(), False), | |
]) | |
window = Window.partitionBy("country").orderBy("amount") | |
window_agg = Window.partitionBy("country") | |
df_sales \ | |
.selectExpr("CAST(value AS STRING)") \ | |
.select(F.from_json("value", schema=schema).alias("data")) \ | |
.select("data.*") \ | |
.withColumn("row", F.row_number().over(window)) \ | |
.withColumn("orders", F.count(F.col("amount")).over(window_agg)) \ | |
.withColumn("sales", F.sum(F.col("amount")).over(window_agg)) \ | |
.filter(F.col("row") == 1).drop("row") \ | |
.select("country", | |
F.format_number("sales", 2).alias("sales"), | |
F.format_number("orders", 0).alias("orders")) \ | |
.coalesce(1) \ | |
.orderBy(F.regexp_replace("sales", ",", "").cast("float"), ascending=False) \ | |
.write \ | |
.csv(path=f"s3a://{args.s3_bucket}/output/", header=True, sep="|") | |
def parse_args(): | |
"""Parse argument values from command-line""" | |
parser = argparse.ArgumentParser(description="Arguments required for script.") | |
parser.add_argument("--bootstrap_servers", required=True, help="Kafka bootstrap servers") | |
parser.add_argument("--s3_bucket", required=True, help="Amazon S3 bucket") | |
parser.add_argument("--read_topic", default="topicA", required=False, help="Kafka topic to read from") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment