Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
Python MapReduce (itertools, multiprocessing)
#!/usr/bin/env python
import os
import itertools
import multiprocessing as mp
from math import ceil
from types import GeneratorType as generator
from functools import partial
from time import time
class MapReduceTask(object):
workers=2, mapper=None, prefiltering=None,
postfiltering=None, reducer=None, initializer=[]
def __init__(self, **kwargs):
defaults = {
'workers' : 2, # Number of processes to be spawned
'mapper' : None, # function to apply to items
'prefiltering' : None, # function to filter items before entering map phase
'postfiltering' : None, # function to filter items after map phase
'reducer' : None, # function passed to reduce for the reduce phases (also the final phase)
'initializer' : None, # initializer value passed only the final reduce phase
'worker_assign' : None, # function to assign items to workers (used for generators only)
class MapReducer(object):
def __init__(self, iterable, **kwargs):
self.started = time()
self.Iterable = iterable
self.MR_Manager = None
self.MR_Task = MapReduceTask(**kwargs)
def mapper(self, item):
''' add any extra handling for the map phase here '''
return self.MR_Task.mapper(item)
def process(self, items, manager):
itemlist = items
if not self.MR_Task.prefiltering is None:
itemlist = itertools.ifilter(self.MR_Task.prefiltering, itemlist)
itemlist = itertools.imap(self.mapper, itemlist)
if not self.MR_Task.postfiltering is None:
itemlist = itertools.ifilter(self.MR_Task.postfiltering, itemlist)
if self.MR_Task.reducer is None:
''' chain will resolve the issue of non-uniform return values '''
manager.append(reduce(self.MR_Task.reducer, itemlist, self.MR_Task.initializer))
def run(self):
m = mp.Manager()
''' manager object to store the result from all processes '''
self.MR_Manager = m.list()
processes = []
step = None
if not isinstance(self.Iterable, generator) and not isinstance(self.Iterable, xrange):
''' Lists, tuples (not generators) '''
l = len(self.Iterable)
''' determine slice size '''
step = int(ceil(l/float(self.MR_Task.workers)))
''' setup processes '''
for n in range(self.MR_Task.workers):
''' if the length of the iterable is known slice the iterable and assign to each worker '''
if step is not None:
P = mp.Process(target=self.process, args=(itertools.islice(self.Iterable, n*step, (n+1)*step), self.MR_Manager))
create a partial since we need to pass the worker count and
current worker id to the assignment filter
assignment = partial(self.MR_Task.worker_assign, self.MR_Task.workers, n)
''' otherwise filter elements with worker_assign '''
P = mp.Process(target=self.process, args=(itertools.ifilter(assignment, self.Iterable,), self.MR_Manager))
''' start & run '''
[ p.start() for p in processes ]
[ p.join() for p in processes ]
''' final reduce phase '''
itemlist = itertools.chain(self.MR_Manager)
if not self.MR_Task.reducer is None:
''' reduce cannot handle None initializer, but works as expected if we omit the parameter altogether '''
if not self.MR_Task.initializer is None:
return reduce(self.MR_Task.reducer, itemlist, self.MR_Task.initializer)
return reduce(self.MR_Task.reducer, itemlist)
return itemlist
if __name__ == "__main__":
''' Helper Functions for the examples '''
def mapper_1(item):
return -item
def mapper_2(item):
return item**2
def reducer_2(accumulated, item):
return accumulated + item
def filter_1(item):
return item % 2 == 0
def timer(start):
print ' Time : %8.6fsec' % (time()-start)
N = 20
''' Example '''
start = time()
mr = MapReducer(range(N), mapper=mapper_1)
print '* map '
print ' List:', list(
''' approximate running time '''
mr = MapReducer(range(N), mapper=mapper_2, reducer=reducer_2, initializer=0)
print '* map & reduce '
print ' MR Result :',
print ' Validation :', sum([ n**2 for n in range(N) ])
mr = MapReducer(range(N), mapper=mapper_2, reducer=reducer_2, prefiltering=filter_1, initializer=0)
print '* pre-filtering, map, reduce '
print ' MR Result :',
print ' Validation :', sum([ n**2 for n in range(N) if n % 2 == 0 ])
mr = MapReducer(
worker_assign=lambda workers, current_worker_id, item: item % workers == current_worker_id
print '* pre-filtering, map, reduce with generator input '
print ' MR Result :',
print ' Validation :', sum([ n**2 for n in xrange(N) if n % 2 == 0 ])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment