/rps_bot_v4.py Secret
Created
January 2, 2025 17:07
Rock, Paper, Scissors bot for tournament at Recurse Center
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Gianluca V4: Markov model ++ | |
""" | |
from skeleton.actions import RockAction, PaperAction, ScissorsAction | |
from skeleton.bot import Bot | |
from skeleton.runner import parse_args, run_bot | |
import math | |
import random | |
from collections import defaultdict | |
class Player(Bot): | |
def __init__(self): | |
self.actions = [RockAction(), PaperAction( | |
), ScissorsAction()] # Available actions | |
self.order = 3 # Change this to increase pattern length | |
self.transition_count = defaultdict(lambda: defaultdict(lambda: 1)) | |
self.opponent_history = [] | |
self.my_history = [] | |
self.payoff_history = [] | |
def handle_results(self, *, my_action, their_action, my_payoff, match_clock): | |
if len(self.opponent_history) >= self.order: | |
last_patterns = tuple(self.opponent_history[-self.order:]) | |
self.transition_count[last_patterns][their_action] += 1 | |
self.opponent_history.append(their_action) | |
self.my_history.append(my_action) | |
self.payoff_history.append(my_payoff) | |
def predict_next_action(self): | |
if len(self.opponent_history) < self.order: | |
# Not enough history to use the Markov model | |
return random.choice(self.actions) | |
last_patterns = tuple(self.opponent_history[-self.order:]) | |
probabilities = self.transition_count[last_patterns] | |
if not probabilities: | |
# No data for this pattern, choose an action randomly | |
return random.choice(self.actions) | |
most_likely_action = max(probabilities, key=probabilities.get) | |
return most_likely_action | |
def get_action(self, *, match_clock): | |
if len(self.payoff_history) > 50 and sum(self.payoff_history) < -5: | |
print("this case", len(self.payoff_history), | |
sum(self.payoff_history)) | |
return random.choice(self.actions) | |
# Employ reactive change if consistently losing | |
if len(self.payoff_history) > 4 and sum(self.payoff_history[-5:]) < -2: | |
return random.choice(self.actions) # Switch tactics randomly | |
# Normal prediction and counter measure | |
if len(self.opponent_history) >= self.order: | |
prediction = self.predict_next_action() | |
return self.counter_action(prediction) | |
return random.choice(self.actions) # Initial fallback | |
def counter_action(self, action): | |
# Counter moves | |
if isinstance(action, RockAction): | |
return PaperAction() | |
elif isinstance(action, PaperAction): | |
return ScissorsAction() | |
elif isinstance(action, ScissorsAction): | |
return RockAction() | |
if __name__ == '__main__': | |
run_bot(Player(), parse_args()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment