Skip to content

Instantly share code, notes, and snippets.

@gianlucatruda
Created January 2, 2025 17:07
Rock, Paper, Scissors bot for tournament at Recurse Center
"""
Gianluca V4: Markov model ++
"""
from skeleton.actions import RockAction, PaperAction, ScissorsAction
from skeleton.bot import Bot
from skeleton.runner import parse_args, run_bot
import math
import random
from collections import defaultdict
class Player(Bot):
def __init__(self):
self.actions = [RockAction(), PaperAction(
), ScissorsAction()] # Available actions
self.order = 3 # Change this to increase pattern length
self.transition_count = defaultdict(lambda: defaultdict(lambda: 1))
self.opponent_history = []
self.my_history = []
self.payoff_history = []
def handle_results(self, *, my_action, their_action, my_payoff, match_clock):
if len(self.opponent_history) >= self.order:
last_patterns = tuple(self.opponent_history[-self.order:])
self.transition_count[last_patterns][their_action] += 1
self.opponent_history.append(their_action)
self.my_history.append(my_action)
self.payoff_history.append(my_payoff)
def predict_next_action(self):
if len(self.opponent_history) < self.order:
# Not enough history to use the Markov model
return random.choice(self.actions)
last_patterns = tuple(self.opponent_history[-self.order:])
probabilities = self.transition_count[last_patterns]
if not probabilities:
# No data for this pattern, choose an action randomly
return random.choice(self.actions)
most_likely_action = max(probabilities, key=probabilities.get)
return most_likely_action
def get_action(self, *, match_clock):
if len(self.payoff_history) > 50 and sum(self.payoff_history) < -5:
print("this case", len(self.payoff_history),
sum(self.payoff_history))
return random.choice(self.actions)
# Employ reactive change if consistently losing
if len(self.payoff_history) > 4 and sum(self.payoff_history[-5:]) < -2:
return random.choice(self.actions) # Switch tactics randomly
# Normal prediction and counter measure
if len(self.opponent_history) >= self.order:
prediction = self.predict_next_action()
return self.counter_action(prediction)
return random.choice(self.actions) # Initial fallback
def counter_action(self, action):
# Counter moves
if isinstance(action, RockAction):
return PaperAction()
elif isinstance(action, PaperAction):
return ScissorsAction()
elif isinstance(action, ScissorsAction):
return RockAction()
if __name__ == '__main__':
run_bot(Player(), parse_args())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment