Created
March 13, 2017 22:55
-
-
Save gibrown/5ded937f53bf00605b0b98ba13df1b1d to your computer and use it in GitHub Desktop.
Simple graphing of Elasticsearch scoring functions.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
from pylab import * | |
import math | |
from scipy.stats import beta, norm, uniform | |
from scipy.special import betaln | |
from random import random, normalvariate | |
import numpy as np | |
from datetime import * | |
import os | |
import time | |
def graph(x, y, title): | |
plt.plot(x, y) | |
plt.suptitle( title ) | |
plt.show() | |
def gauss( origin, offset, scale, decay, abs_max, x_range, title ): | |
sigma = - scale**2 / ( 2 * math.log( decay ) ) | |
x = np.array(x_range) | |
y = np.exp(-(np.maximum(0, np.absolute(x-origin) - offset)**2)/2/sigma) | |
if ( abs_max > 0 ): | |
y = np.minimum( abs_max, y ) | |
graph( x, y, title ) | |
return y | |
def exp( origin, offset, scale, decay, abs_max, x_range, title ): | |
l = math.log( decay ) / scale | |
x = np.array(x_range) | |
y = np.exp(l * np.maximum(0, np.absolute(x-origin) - offset)) | |
if ( abs_max > 0 ): | |
y = np.minimum( abs_max, y ) | |
graph( x, y, title ) | |
return y | |
def log2p( mult, abs_max, x_range, title ): | |
x = np.array(x_range) | |
y = mult * np.log( x + 2 ) | |
if ( abs_max > 0 ): | |
y = np.minimum( abs_max, y ) | |
graph( x, y, title ) | |
return y | |
def sqrt( mult, abs_max, x_range, title ): | |
x = np.array(x_range) | |
y = mult * np.sqrt( x ) | |
if ( abs_max > 0 ): | |
y = np.minimum( abs_max, y ) | |
graph( x, y, title ) | |
return y | |
################################# | |
# Equations | |
sqrt( 0.1, 0, np.arange( 0, 1000000, 10 ), 'sqrt(active_installs) ' ) | |
x = np.arange( 0, 1000000, 10 ) | |
y1 = log2p( 0.375, 0, x, 'log2p(active_installs)' ) | |
y2 = exp( 1000000, 0, 900000, 0.75, 0, x, 'exp(active_installs)' ) | |
graph( x, y1 * y2, 'combined log2p(active_installs) * exp(active_installs)' ) | |
log2p( 0.25, 0, x, 'active installs' ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment