Skip to content

Instantly share code, notes, and snippets.

@giuliomoro
Created February 29, 2020 01:20
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save giuliomoro/c69c758fd9cba12f0a374c75fa14f0d5 to your computer and use it in GitHub Desktop.
Save giuliomoro/c69c758fd9cba12f0a374c75fa14f0d5 to your computer and use it in GitHub Desktop.
#include <Bela.h>
#include <DigitalChannelManager.h>
#include <cmath>
#include <stdio.h>
#define PD_THREADED_IO
#include <libpd/z_libpd.h>
extern "C" {
#include <libpd/s_stuff.h>
};
#include <libraries/UdpServer/UdpServer.h>
#include <libraries/Midi/Midi.h>
#include <libraries/Scope/Scope.h>
#include <libraries/Gui/Gui.h>
#include <string>
#include <sstream>
#include <algorithm>
Gui gui;
enum { minFirstDigitalChannel = 10 };
static unsigned int gAnalogChannelsInUse;
static unsigned int gDigitalChannelsInUse;
static unsigned int gScopeChannelsInUse = 4;
static unsigned int gLibpdBlockSize;
static unsigned int gChannelsInUse;
//static const unsigned int gFirstAudioChannel = 0;
static unsigned int gFirstAnalogInChannel;
static unsigned int gFirstAnalogOutChannel;
static unsigned int gFirstDigitalChannel;
static unsigned int gLibpdDigitalChannelOffset;
static unsigned int gFirstScopeChannel;
void Bela_userSettings(BelaInitSettings *settings)
{
settings->uniformSampleRate = 1;
settings->interleave = 0;
settings->analogOutputsPersist = 0;
}
/*
* MODIFICATION
* ------------
* MPR121 Stuff
*/
#include "I2C_MPR121.h"
// How many pins there are
#define NUM_TOUCH_PINS 12
// Define this to print data to terminal - function prints data from sensor
#undef DEBUG_MPR121
// Change this to change how often the MPR121 is read (in Hz)
int readInterval = 40;
// Change this threshold to set the minimum amount of touch
int threshold = 30;
// This array holds the continuous sensor values
int sensorValue[NUM_TOUCH_PINS];
// ---- internal stuff -- do not change -----
I2C_MPR121 mpr121; // Object to handle MPR121 sensing
AuxiliaryTask i2cTask; // Auxiliary task to read I2C
int readCount = 0; // How long until we read again...
int readIntervalSamples = 0; // How many samples between reads
void readMPR121(void*);
/*********/
float* gInBuf;
float* gOutBuf;
#define PARSE_MIDI
static std::vector<Midi*> midi;
std::vector<std::string> gMidiPortNames;
void dumpMidi()
{
if(midi.size() == 0)
{
printf("No MIDI device enabled\n");
return;
}
printf("The following MIDI devices are enabled:\n");
printf("%4s%20s %3s %3s %s\n",
"Num",
"Name",
"In",
"Out",
"Pd channels"
);
for(unsigned int n = 0; n < midi.size(); ++n)
{
printf("[%2d]%20s %3s %3s (%d-%d)\n",
n,
gMidiPortNames[n].c_str(),
midi[n]->isInputEnabled() ? "x" : "_",
midi[n]->isOutputEnabled() ? "x" : "_",
n * 16,
n * 16 + 15
);
}
}
Midi* openMidiDevice(std::string name, bool verboseSuccess = false, bool verboseError = false)
{
Midi* newMidi;
newMidi = new Midi();
newMidi->readFrom(name.c_str());
newMidi->writeTo(name.c_str());
#ifdef PARSE_MIDI
newMidi->enableParser(true);
#else
newMidi->enableParser(false);
#endif /* PARSE_MIDI */
if(newMidi->isOutputEnabled())
{
if(verboseSuccess)
printf("Opened MIDI device %s as output\n", name.c_str());
}
if(newMidi->isInputEnabled())
{
if(verboseSuccess)
printf("Opened MIDI device %s as input\n", name.c_str());
}
if(!newMidi->isInputEnabled() && !newMidi->isOutputEnabled())
{
if(verboseError)
fprintf(stderr, "Failed to open MIDI device %s\n", name.c_str());
return nullptr;
} else {
return newMidi;
}
}
static unsigned int getPortChannel(int* channel){
unsigned int port = 0;
while(*channel > 16){
*channel -= 16;
port += 1;
}
return port;
}
void Bela_MidiOutNoteOn(int channel, int pitch, int velocity) {
int port = getPortChannel(&channel);
rt_printf("noteout _ port: %d, channel: %d, pitch: %d, velocity %d\n", port, channel, pitch, velocity);
port < midi.size() && midi[port]->writeNoteOn(channel, pitch, velocity);
}
void Bela_MidiOutControlChange(int channel, int controller, int value) {
int port = getPortChannel(&channel);
rt_printf("ctlout _ port: %d, channel: %d, controller: %d, value: %d\n", port, channel, controller, value);
port < midi.size() && midi[port]->writeControlChange(channel, controller, value);
}
void Bela_MidiOutProgramChange(int channel, int program) {
int port = getPortChannel(&channel);
rt_printf("pgmout _ port: %d, channel: %d, program: %d\n", port, channel, program);
port < midi.size() && midi[port]->writeProgramChange(channel, program);
}
void Bela_MidiOutPitchBend(int channel, int value) {
int port = getPortChannel(&channel);
rt_printf("bendout _ port: %d, channel: %d, value: %d\n", port, channel, value);
port < midi.size() && midi[port]->writePitchBend(channel, value);
}
void Bela_MidiOutAftertouch(int channel, int pressure){
int port = getPortChannel(&channel);
rt_printf("touchout _ port: %d, channel: %d, pressure: %d\n", port, channel, pressure);
port < midi.size() && midi[port]->writeChannelPressure(channel, pressure);
}
void Bela_MidiOutPolyAftertouch(int channel, int pitch, int pressure){
int port = getPortChannel(&channel);
rt_printf("polytouchout _ port: %d, channel: %d, pitch: %d, pressure: %d\n", port, channel, pitch, pressure);
port < midi.size() && midi[port]->writePolyphonicKeyPressure(channel, pitch, pressure);
}
void Bela_MidiOutByte(int port, int byte){
rt_printf("port: %d, byte: %d\n", port, byte);
if(port > (int)midi.size()){
// if the port is out of range, redirect to the first port.
rt_fprintf(stderr, "Port out of range, using port 0 instead\n");
port = 0;
}
port < midi.size() && midi[port]->writeOutput(byte);
}
void Bela_printHook(const char *received){
rt_printf("%s", received);
}
static DigitalChannelManager dcm;
void sendDigitalMessage(bool state, unsigned int delay, void* receiverName){
libpd_float((const char*)receiverName, (float)state);
// rt_printf("%s: %d\n", (char*)receiverName, state);
}
void Bela_listHook(const char *source, int argc, t_atom *argv)
{
if(0 == strcmp(source, "bela_guiOut"))
{
if(!libpd_is_float(&argv[0]))
{
rt_fprintf(stderr, "Wrong format for bela_gui, the first element should be a float\n");
return;
}
unsigned int bufNum = libpd_get_float(&argv[1]);
if(libpd_is_float(&argv[1])) // if the first element is a float, we send an array of floats
{
float buf[argc - 1];
for(int n = 1; n < argc; ++n)
{
t_atom *a = &argv[n];
if(!libpd_is_float(a))
{
rt_fprintf(stderr, "Wrong format for bela_gui\n"); // this should never happen, because then the selector would've not been "float"
return;
}
buf[n - 1] = libpd_get_float(a);
}
gui.sendBuffer(bufNum, buf, argc - 1);
return;
} else { // otherwise we send each element of the list separately
for(int n = 1; n < argc; ++n)
{
t_atom *a = &argv[n];
if (libpd_is_float(a)) {
float x = libpd_get_float(a);
gui.sendBuffer(bufNum, x);
} else if (libpd_is_symbol(a)) {
char *s = libpd_get_symbol(a);
gui.sendBuffer(bufNum, s, strlen(s)); // TODO: should it be strlen(s)+1?
}
}
}
return;
}
}
void Bela_messageHook(const char *source, const char *symbol, int argc, t_atom *argv){
if(strcmp(source, "bela_setMidi") == 0){
int num[3] = {0, 0, 0};
for(int n = 0; n < argc && n < 3; ++n)
{
if(!libpd_is_float(&argv[n]))
{
fprintf(stderr, "Wrong format for Bela_setMidi, expected:[hw 1 0 0(");
return;
}
num[n] = libpd_get_float(&argv[n]);
}
std::ostringstream deviceName;
deviceName << symbol << ":" << num[0] << "," << num[1] << "," << num[2];
printf("Adding Midi device: %s\n", deviceName.str().c_str());
Midi* newMidi = openMidiDevice(deviceName.str(), false, true);
if(newMidi)
{
midi.push_back(newMidi);
gMidiPortNames.push_back(deviceName.str());
}
dumpMidi();
return;
}
if(strcmp(source, "bela_setDigital") == 0){
// symbol is the direction, argv[0] is the channel, argv[1] (optional)
// is signal("sig" or "~") or message("message", default) rate
bool isMessageRate = true; // defaults to message rate
bool direction = 0; // initialize it just to avoid the compiler's warning
bool disable = false;
if(strcmp(symbol, "in") == 0){
direction = INPUT;
} else if(strcmp(symbol, "out") == 0){
direction = OUTPUT;
} else if(strcmp(symbol, "disable") == 0){
disable = true;
} else {
return;
}
if(argc == 0){
return;
} else if (libpd_is_float(&argv[0]) == false){
return;
}
int channel = libpd_get_float(&argv[0]) - gLibpdDigitalChannelOffset;
if(disable == true){
dcm.unmanage(channel);
return;
}
if(argc >= 2){
t_atom* a = &argv[1];
if(libpd_is_symbol(a)){
char *s = libpd_get_symbol(a);
if(strcmp(s, "~") == 0 || strncmp(s, "sig", 3) == 0){
isMessageRate = false;
}
}
}
dcm.manage(channel, direction, isMessageRate);
return;
}
}
void Bela_floatHook(const char *source, float value){
// let's make this as optimized as possible for built-in digital Out parsing
// the built-in digital receivers are of the form "bela_digitalOutXX" where XX is between gLibpdDigitalChannelOffset and (gLibpdDigitalCHannelOffset+gDigitalChannelsInUse)
static int prefixLength = 15; // strlen("bela_digitalOut")
if(strncmp(source, "bela_digitalOut", prefixLength)==0){
if(source[prefixLength] != 0){ //the two ifs are used instead of if(strlen(source) >= prefixLength+2)
if(source[prefixLength + 1] != 0){
// quickly convert the suffix to integer, assuming they are numbers, avoiding to call atoi
int receiver = ((source[prefixLength] - 48) * 10);
receiver += (source[prefixLength+1] - 48);
unsigned int channel = receiver - gLibpdDigitalChannelOffset; // go back to the actual Bela digital channel number
if(channel < gDigitalChannelsInUse){ //number of digital channels
dcm.setValue(channel, value);
}
}
}
}
}
std::vector<std::string> gReceiverInputNames;
std::vector<std::string> gReceiverOutputNames;
void generateDigitalNames(unsigned int numDigitals, unsigned int libpdOffset, std::vector<std::string>& receiverInputNames, std::vector<std::string>& receiverOutputNames)
{
std::string inBaseString = "bela_digitalIn";
std::string outBaseString = "bela_digitalOut";
for(unsigned int i = 0; i<numDigitals; i++)
{
receiverInputNames.push_back(inBaseString + std::to_string(i+libpdOffset));
receiverOutputNames.push_back(outBaseString + std::to_string(i+libpdOffset));
}
}
void printDigitalNames(std::vector<std::string>& receiverInputNames, std::vector<std::string>& receiverOutputNames)
{
printf("DIGITAL INPUTS\n");
for(unsigned int i=0; i<gDigitalChannelsInUse; i++)
printf("%s\n", receiverInputNames[i].c_str());
printf("DIGITAL OUTPUTS\n");
for(unsigned int i=0; i<gDigitalChannelsInUse; i++)
printf("%s\n", receiverOutputNames[i].c_str());
}
static char multiplexerArray[] = {"bela_multiplexer"};
static int multiplexerArraySize = 0;
static bool pdMultiplexerActive = false;
#ifdef PD_THREADED_IO
void fdLoop(void* arg){
while(!gShouldStop){
sys_doio();
usleep(3000);
}
}
#endif /* PD_THREADED_IO */
Scope scope;
float* gScopeOut;
void* gPatch;
bool gDigitalEnabled = 0;
bool setup(BelaContext *context, void *userData)
{
gui.setup(context->projectName);
// Check Pd's version
int major, minor, bugfix;
sys_getversion(&major, &minor, &bugfix);
printf("Running Pd %d.%d-%d\n", major, minor, bugfix);
// We requested in Bela_userSettings() to have uniform sampling rate for audio
// and analog and non-interleaved buffers.
// So let's check this actually happened
if(context->analogSampleRate != context->audioSampleRate)
{
fprintf(stderr, "The sample rate of analog and audio must match. Try running with --uniform-sample-rate\n");
return false;
}
if(context->flags & BELA_FLAG_INTERLEAVED)
{
fprintf(stderr, "The audio and analog channels must be interleaved.\n");
return false;
}
if(context->digitalFrames > 0 && context->digitalChannels > 0)
gDigitalEnabled = 1;
/*
* MODIFICATION
* ------------
* MPR121 Stuff
*/
if(!mpr121.begin(1, 0x5A)) {
rt_printf("Error initialising MPR121\n");
return false;
}
i2cTask = Bela_createAuxiliaryTask(readMPR121, 50, "bela-mpr121");
readIntervalSamples = context->audioSampleRate / readInterval;
/*********/
// add here other devices you need
gMidiPortNames.push_back("hw:1,0,0");
//gMidiPortNames.push_back("hw:0,0,0");
//gMidiPortNames.push_back("hw:1,0,1");
scope.setup(gScopeChannelsInUse, context->audioSampleRate);
gScopeOut = new float[gScopeChannelsInUse];
// Check first of all if the patch file exists. Will actually open it later.
char file[] = "_main.pd";
char folder[] = "./";
unsigned int strSize = strlen(file) + strlen(folder) + 1;
char* str = (char*)malloc(sizeof(char) * strSize);
snprintf(str, strSize, "%s%s", folder, file);
if(access(str, F_OK) == -1 ) {
printf("Error file %s/%s not found. The %s file should be your main patch.\n", folder, file, file);
return false;
}
free(str);
// analog setup
gAnalogChannelsInUse = context->analogInChannels;
gDigitalChannelsInUse = context->digitalChannels;
printf("Audio channels in use: %d\n", context->audioOutChannels);
printf("Analog channels in use: %d\n", gAnalogChannelsInUse);
printf("Digital channels in use: %d\n", gDigitalChannelsInUse);
// Channel distribution
gFirstAnalogInChannel = std::max(context->audioInChannels, context->audioOutChannels);
gFirstAnalogOutChannel = gFirstAnalogInChannel;
gFirstDigitalChannel = gFirstAnalogInChannel + std::max(context->analogInChannels, context->analogOutChannels);
if(gFirstDigitalChannel < minFirstDigitalChannel)
gFirstDigitalChannel = minFirstDigitalChannel; //for backwards compatibility
gLibpdDigitalChannelOffset = gFirstDigitalChannel + 1;
gFirstScopeChannel = gFirstDigitalChannel + gDigitalChannelsInUse;
gChannelsInUse = gFirstScopeChannel + gScopeChannelsInUse;
// Create receiverNames for digital channels
generateDigitalNames(gDigitalChannelsInUse, gLibpdDigitalChannelOffset, gReceiverInputNames, gReceiverOutputNames);
// digital setup
if(gDigitalEnabled)
{
dcm.setCallback(sendDigitalMessage);
if(gDigitalChannelsInUse > 0){
for(unsigned int ch = 0; ch < gDigitalChannelsInUse; ++ch){
dcm.setCallbackArgument(ch, (void*) gReceiverInputNames[ch].c_str());
}
}
}
unsigned int n = 0;
while(n < gMidiPortNames.size())
{
Midi* newMidi = openMidiDevice(gMidiPortNames[n], false, false);
if(newMidi)
{
midi.push_back(newMidi);
++n;
} else {
gMidiPortNames.erase(gMidiPortNames.begin() + n);
}
}
dumpMidi();
// check that we are not running with a blocksize smaller than gLibPdBlockSize
gLibpdBlockSize = libpd_blocksize();
if(context->audioFrames < gLibpdBlockSize){
fprintf(stderr, "Error: minimum block size must be %d\n", gLibpdBlockSize);
return false;
}
// set hooks before calling libpd_init
libpd_set_printhook(Bela_printHook);
libpd_set_floathook(Bela_floatHook);
libpd_set_listhook(Bela_listHook);
libpd_set_messagehook(Bela_messageHook);
libpd_set_noteonhook(Bela_MidiOutNoteOn);
libpd_set_controlchangehook(Bela_MidiOutControlChange);
libpd_set_programchangehook(Bela_MidiOutProgramChange);
libpd_set_pitchbendhook(Bela_MidiOutPitchBend);
libpd_set_aftertouchhook(Bela_MidiOutAftertouch);
libpd_set_polyaftertouchhook(Bela_MidiOutPolyAftertouch);
libpd_set_midibytehook(Bela_MidiOutByte);
//initialize libpd. This clears the search path
libpd_init();
//Add the current folder to the search path for externals
libpd_add_to_search_path(".");
libpd_add_to_search_path("../pd-externals");
libpd_init_audio(gChannelsInUse, gChannelsInUse, context->audioSampleRate);
gInBuf = get_sys_soundin();
gOutBuf = get_sys_soundout();
// start DSP:
// [; pd dsp 1(
libpd_start_message(1);
libpd_add_float(1.0f);
libpd_finish_message("pd", "dsp");
// Bind your receivers here
for(unsigned int i = 0; i < gDigitalChannelsInUse; i++)
libpd_bind(gReceiverOutputNames[i].c_str());
libpd_bind("bela_setDigital");
libpd_bind("bela_setMidi");
libpd_bind("bela_guiOut");
// open patch:
gPatch = libpd_openfile(file, folder);
if(gPatch == NULL){
printf("Error: file %s/%s is corrupted.\n", folder, file);
return false;
}
// If the user wants to use the multiplexer capelet,
// the patch will have to contain an array called "bela_multiplexer"
// and a receiver [r bela_multiplexerChannels]
if(context->multiplexerChannels > 0 && libpd_arraysize(multiplexerArray) >= 0){
pdMultiplexerActive = true;
multiplexerArraySize = context->multiplexerChannels * context->analogInChannels;
// [; bela_multiplexer ` multiplexerArraySize` resize(
libpd_start_message(1);
libpd_add_float(multiplexerArraySize);
libpd_finish_message(multiplexerArray, "resize");
// [; bela_multiplexerChannels `context->multiplexerChannels`(
libpd_float("bela_multiplexerChannels", context->multiplexerChannels);
}
// Tell Pd that we will manage the io loop,
// and we do so in an Auxiliary Task
#ifdef PD_THREADED_IO
sys_dontmanageio(1);
AuxiliaryTask fdTask;
fdTask = Bela_createAuxiliaryTask(fdLoop, 50, "libpd-fdTask", NULL);
Bela_scheduleAuxiliaryTask(fdTask);
#endif /* PD_THREADED_IO */
dcm.setVerbose(false);
return true;
}
void render(BelaContext *context, void *userData)
{
int num;
libpd_start_message(9);
for(int n = 0; n < 9; ++n)
libpd_add_float(sensorValue[n]);
libpd_finish_list("sensorValue");
#ifdef PARSE_MIDI
for(unsigned int port = 0; port < midi.size(); ++port){
while((num = midi[port]->getParser()->numAvailableMessages()) > 0){
static MidiChannelMessage message;
message = midi[port]->getParser()->getNextChannelMessage();
rt_printf("On port %d (%s): ", port, gMidiPortNames[port].c_str());
message.prettyPrint(); // use this to print beautified message (channel, data bytes)
switch(message.getType()){
case kmmNoteOn:
{
int noteNumber = message.getDataByte(0);
int velocity = message.getDataByte(1);
int channel = message.getChannel();
libpd_noteon(channel + port * 16, noteNumber, velocity);
break;
}
case kmmNoteOff:
{
/* PureData does not seem to handle noteoff messages as per the MIDI specs,
* so that the noteoff velocity is ignored. Here we convert them to noteon
* with a velocity of 0.
*/
int noteNumber = message.getDataByte(0);
// int velocity = message.getDataByte(1); // would be ignored by Pd
int channel = message.getChannel();
libpd_noteon(channel + port * 16, noteNumber, 0);
break;
}
case kmmControlChange:
{
int channel = message.getChannel();
int controller = message.getDataByte(0);
int value = message.getDataByte(1);
libpd_controlchange(channel + port * 16, controller, value);
break;
}
case kmmProgramChange:
{
int channel = message.getChannel();
int program = message.getDataByte(0);
libpd_programchange(channel + port * 16, program);
break;
}
case kmmPolyphonicKeyPressure:
{
int channel = message.getChannel();
int pitch = message.getDataByte(0);
int value = message.getDataByte(1);
libpd_polyaftertouch(channel + port * 16, pitch, value);
break;
}
case kmmChannelPressure:
{
int channel = message.getChannel();
int value = message.getDataByte(0);
libpd_aftertouch(channel + port * 16, value);
break;
}
case kmmPitchBend:
{
int channel = message.getChannel();
int value = ((message.getDataByte(1) << 7)| message.getDataByte(0)) - 8192;
libpd_pitchbend(channel + port * 16, value);
break;
}
case kmmSystem:
// currently Bela only handles sysrealtime, and it does so pretending it is a channel message with no data bytes, so we have to re-assemble the status byte
{
int channel = message.getChannel();
int status = message.getStatusByte();
int byte = channel | status;
libpd_sysrealtime(port, byte);
break;
}
case kmmNone:
case kmmAny:
break;
}
}
}
#else
int input;
for(unsigned int port = 0; port < NUM_MIDI_PORTS; ++port){
while((input = midi[port].getInput()) >= 0){
libpd_midibyte(port, input);
}
}
#endif /* PARSE_MIDI */
unsigned int numberOfPdBlocksToProcess = context->audioFrames / gLibpdBlockSize;
// Remember: we have non-interleaved buffers and the same sampling rate for
// analogs, audio and digitals
for(unsigned int tick = 0; tick < numberOfPdBlocksToProcess; ++tick)
{
//audio input
for(int n = 0; n < context->audioInChannels; ++n)
{
memcpy(
gInBuf + n * gLibpdBlockSize,
context->audioIn + tick * gLibpdBlockSize + n * context->audioFrames,
sizeof(context->audioIn[0]) * gLibpdBlockSize
);
}
// analog input
for(int n = 0; n < context->analogInChannels; ++n)
{
memcpy(
gInBuf + gLibpdBlockSize * gFirstAnalogInChannel + n * gLibpdBlockSize,
context->analogIn + tick * gLibpdBlockSize + n * context->analogFrames,
sizeof(context->analogIn[0]) * gLibpdBlockSize
);
}
// multiplexed analog input
if(pdMultiplexerActive)
{
// we do not disable regular analog inputs if muxer is active, because user may have bridged them on the board and
// they may be using half of them at a high sampling-rate
static int lastMuxerUpdate = 0;
if(++lastMuxerUpdate == multiplexerArraySize){
lastMuxerUpdate = 0;
libpd_write_array(multiplexerArray, 0, (float *const)context->multiplexerAnalogIn, multiplexerArraySize);
}
}
unsigned int digitalFrameBase = gLibpdBlockSize * tick;
unsigned int j;
unsigned int k;
float* p0;
float* p1;
// digital input
if(gDigitalEnabled)
{
// digital in at message-rate
dcm.processInput(&context->digital[digitalFrameBase], gLibpdBlockSize);
// digital in at signal-rate
for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) {
unsigned int digitalFrame = digitalFrameBase + j;
for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstDigitalChannel;
k < 16; ++k, p1 += gLibpdBlockSize) {
if(dcm.isSignalRate(k) && dcm.isInput(k)){ // only process input channels that are handled at signal rate
*p1 = digitalRead(context, digitalFrame, k);
}
}
}
}
libpd_process_sys(); // process the block
// digital outputs
if(gDigitalEnabled)
{
// digital out at signal-rate
for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; ++j, ++p0) {
unsigned int digitalFrame = (digitalFrameBase + j);
for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstDigitalChannel;
k < context->digitalChannels; k++, p1 += gLibpdBlockSize)
{
if(dcm.isSignalRate(k) && dcm.isOutput(k)){ // only process output channels that are handled at signal rate
digitalWriteOnce(context, digitalFrame, k, *p1 > 0.5);
}
}
}
// digital out at message-rate
dcm.processOutput(&context->digital[digitalFrameBase], gLibpdBlockSize);
}
// scope output
for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; ++j, ++p0) {
for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstScopeChannel; k < gScopeChannelsInUse; k++, p1 += gLibpdBlockSize) {
gScopeOut[k] = *p1;
}
scope.log(gScopeOut[0], gScopeOut[1], gScopeOut[2], gScopeOut[3]);
}
/*
* MODIFICATION
* ------------
* MPR121 Stuff
*/
// Keep this code: it schedules the touch sensor readings
if(++readCount >= readIntervalSamples) {
readCount = 0;
Bela_scheduleAuxiliaryTask(i2cTask);
}
/*********/
// audio output
for(int n = 0; n < context->audioOutChannels; ++n)
{
memcpy(
context->audioOut + tick * gLibpdBlockSize + n * context->audioFrames,
gOutBuf + n * gLibpdBlockSize,
sizeof(context->audioOut[0]) * gLibpdBlockSize
);
}
//analog output
for(int n = 0; n < context->analogOutChannels; ++n)
{
memcpy(
context->analogOut + tick * gLibpdBlockSize + n * context->analogFrames,
gOutBuf + gLibpdBlockSize * gFirstAnalogOutChannel + n * gLibpdBlockSize,
sizeof(context->analogOut[0]) * gLibpdBlockSize
);
}
}
}
void cleanup(BelaContext *context, void *userData)
{
for(auto a : midi)
{
delete a;
}
libpd_closefile(gPatch);
delete [] gScopeOut;
}
// Auxiliary task to read the I2C board
void readMPR121(void*)
{
for(int i = 0; i < NUM_TOUCH_PINS; i++) {
sensorValue[i] = -(mpr121.filteredData(i) - mpr121.baselineData(i));
sensorValue[i] -= threshold;
if(sensorValue[i] < 0)
sensorValue[i] = 0;
#ifdef DEBUG_MPR121
rt_printf("%d ", sensorValue[i]); //prints the values of the sensor when DEBUG_MPR121 is define at beginning of programme
#endif
}
#ifdef DEBUG_MPR121
rt_printf("\n");
#endif
// You can use this to read binary on/off touch state more easily
//rt_printf("Touched: %x\n", mpr121.touched());
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment