Skip to content
Create a gist now

Instantly share code, notes, and snippets.

@glamp /
Last active

Plotting SVM predictions using matplotlib and sklearn
import numpy as np
import pylab as pl
import pandas as pd
from sklearn import svm
from sklearn import linear_model
from sklearn import tree
from sklearn.metrics import confusion_matrix
x_min, x_max = 0, 15
y_min, y_max = 0, 10
step = .1
# to plot the boundary, we're going to create a matrix of every possible point
# then label each point as a wolf or cow using our classifier
xx, yy = np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step))
df = pd.DataFrame(data={'x': xx.ravel(), 'y': yy.ravel()})
df['color_gauge'] = (df.x-7.5)**2 + (df.y-5)**2
df['color'] = df.color_gauge.apply(lambda x: "red" if x <= 15 else "green")
df['color_as_int'] = df.color.apply(lambda x: 0 if x=="red" else 1)
print "Points on flag:"
print df.groupby('color').size()
figure = 1
# plot a figure for the entire dataset
for color in df.color.unique():
idx = df.color==color
pl.subplot(2, 2, figure)
pl.scatter(df[idx].x, df[idx].y, color=color)
train_idx = df.x < 10
train = df[train_idx]
test = df[-train_idx]
print "Training Set Size: %d" % len(train)
print "Test Set Size: %d" % len(test)
# train using the x and y position coordiantes
cols = ["x", "y"]
clfs = {
"SVM": svm.SVC(degree=0.5),
"Logistic" : linear_model.LogisticRegression(),
"Decision Tree": tree.DecisionTreeClassifier()
# racehorse different classifiers and plot the results
for clf_name, clf in clfs.iteritems():
figure += 1
# train the classifier[cols], train.color_as_int)
# get the predicted values from the test set
test['predicted_color_as_int'] = clf.predict(test[cols])
test['pred_color'] = test.predicted_color_as_int.apply(lambda x: "red" if x==0 else "green")
# create a new subplot on the plot
pl.subplot(2, 2, figure)
# plot each predicted color
for color in test.pred_color.unique():
# plot only rows where pred_color is equal to color
idx = test.pred_color==color
pl.scatter(test[idx].x, test[idx].y, color=color)
# plot the training set as well
for color in train.color.unique():
idx = train.color==color
pl.scatter(train[idx].x, train[idx].y, color=color)
# add a dotted line to show the boundary between the training and test set
# (everything to the right of the line is in the test set)
#this plots a vertical line
train_line_y = np.linspace(y_min, y_max) #evenly spaced array from 0 to 10
train_line_x = np.repeat(10, len(train_line_y)) #repeat 10 (threshold for traininset) n times
# add a black, dotted line to the subplot
pl.plot(train_line_x, train_line_y, 'k--', color="black")
print "Confusion Matrix for %s:" % clf_name
print confusion_matrix(test.color, test.pred_color)

Thanks for your code and I will get a better understanding.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.