Skip to content

Instantly share code, notes, and snippets.

@glamp
Created March 3, 2013 17:58
Show Gist options
  • Star 2 You must be signed in to star a gist
  • Fork 2 You must be signed in to fork a gist
  • Save glamp/5077283 to your computer and use it in GitHub Desktop.
Save glamp/5077283 to your computer and use it in GitHub Desktop.
import numpy as np
def cartesian(arrays, out=None):
"""
Generate a cartesian product of input arrays.
Parameters
----------
arrays : list of array-like
1-D arrays to form the cartesian product of.
out : ndarray
Array to place the cartesian product in.
Returns
-------
out : ndarray
2-D array of shape (M, len(arrays)) containing cartesian products
formed of input arrays.
Examples
--------
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
"""
arrays = [np.asarray(x) for x in arrays]
dtype = arrays[0].dtype
n = np.prod([x.size for x in arrays])
if out is None:
out = np.zeros([n, len(arrays)], dtype=dtype)
m = n / arrays[0].size
out[:,0] = np.repeat(arrays[0], m)
if arrays[1:]:
cartesian(arrays[1:], out=out[0:m,1:])
for j in xrange(1, arrays[0].size):
out[j*m:(j+1)*m,1:] = out[0:m,1:]
return out
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment