Skip to content

Instantly share code, notes, and snippets.

@glamp
Created December 2, 2016 16:24
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save glamp/8f32c773ea9ae3215088ff2a3b8543ed to your computer and use it in GitHub Desktop.
Save glamp/8f32c773ea9ae3215088ff2a3b8543ed to your computer and use it in GitHub Desktop.
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers import Embedding
from keras.layers import AveragePooling1D
from keras.datasets import imdb
def create_ngram_set(input_list, ngram_value=2):
"""
Extract a set of n-grams from a list of integers.
>>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=2)
{(4, 9), (4, 1), (1, 4), (9, 4)}
>>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=3)
[(1, 4, 9), (4, 9, 4), (9, 4, 1), (4, 1, 4)]
"""
return set(zip(*[input_list[i:] for i in range(ngram_value)]))
def add_ngram(sequences, token_indice, ngram_range=2):
"""
Augment the input list of list (sequences) by appending n-grams values.
Example: adding bi-gram
>>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
>>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017}
>>> add_ngram(sequences, token_indice, ngram_range=2)
[[1, 3, 4, 5, 1337, 2017], [1, 3, 7, 9, 2, 1337, 42]]
Example: adding tri-gram
>>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
>>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017, (7, 9, 2): 2018}
>>> add_ngram(sequences, token_indice, ngram_range=3)
[[1, 3, 4, 5, 1337], [1, 3, 7, 9, 2, 1337, 2018]]
"""
new_sequences = []
for input_list in sequences:
new_list = input_list[:]
for i in range(len(new_list)-ngram_range+1):
for ngram_value in range(2, ngram_range+1):
ngram = tuple(new_list[i:i+ngram_value])
if ngram in token_indice:
new_list.append(token_indice[ngram])
new_sequences.append(new_list)
return new_sequences
# Set parameters:
# ngram_range = 2 will add bi-grams features
ngram_range = 1
max_features = 20000
maxlen = 400
batch_size = 32
embedding_dims = 50
nb_epoch = 5
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print('Average train sequence length: {}'.format(np.mean(list(map(len, X_train)), dtype=int)))
print('Average test sequence length: {}'.format(np.mean(list(map(len, X_test)), dtype=int)))
if ngram_range > 1:
print('Adding {}-gram features'.format(ngram_range))
# Create set of unique n-gram from the training set.
ngram_set = set()
for input_list in X_train:
for i in range(2, ngram_range+1):
set_of_ngram = create_ngram_set(input_list, ngram_value=i)
ngram_set.update(set_of_ngram)
# Dictionary mapping n-gram token to a unique integer.
# Integer values are greater than max_features in order
# to avoid collision with existing features.
start_index = max_features + 1
token_indice = {v: k+start_index for k, v in enumerate(ngram_set)}
indice_token = {token_indice[k]: k for k in token_indice}
# max_features is the highest integer that could be found in the dataset.
max_features = np.max(list(indice_token.keys())) + 1
# Augmenting X_train and X_test with n-grams features
X_train = add_ngram(X_train, token_indice, ngram_range)
X_test = add_ngram(X_test, token_indice, ngram_range)
print('Average train sequence length: {}'.format(np.mean(list(map(len, X_train)), dtype=int)))
print('Average test sequence length: {}'.format(np.mean(list(map(len, X_test)), dtype=int)))
print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('Build model...')
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(max_features,
embedding_dims,
input_length=maxlen))
# we add a AveragePooling1D, which will average the embeddings
# of all words in the document
model.add(AveragePooling1D(pool_length=model.output_shape[1]))
# We flatten the output of the AveragePooling1D layer
model.add(Flatten())
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(X_test, y_test))
from yhat import Yhat, YhatModel
class KerasTest(YhatModel):
REQUIREMENTS=[
"Keras==1.1.1",
"numpy==1.11.2"
]
def execute(self, data):
data = np.array([data['x']])
return { "prob": model.predict_proba(data)[0].tolist() }
xtest = { "x": X_train[0].tolist() }
kt = KerasTest()
kt.execute(xtest)
yh = Yhat(USERNAME, APIKEY, URL)
yh.deploy("KerasTest", KerasTest, globals(), sure=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment