Created
January 10, 2021 17:02
-
-
Save gmihaila/8052f4eb399c668a502173e7dde29e66 to your computer and use it in GitHub Desktop.
Bert Inner Workings output.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class BertOutput(torch.nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = torch.nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
print('\nHidden States:\n', hidden_states.shape) | |
hidden_states = self.dense(hidden_states) | |
print('\nHidden States Linear Layer:\n', hidden_states.shape) | |
hidden_states = self.dropout(hidden_states) | |
print('\nHidden States Dropout Layer:\n', hidden_states.shape) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
print('\nHidden States Layer Normalization:\n', hidden_states.shape) | |
return hidden_states | |
# Create bert output layer. | |
bert_output_block = BertOutput(bert_configuraiton) | |
# Perform forward pass - attention_output[0] dealing with tuple. | |
layer_output = bert_output_block.forward(hidden_states=intermediate_output, input_tensor=attention_output[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment