Skip to content

Instantly share code, notes, and snippets.

🔨
Fixing things

Peter Goldsborough goldsborough

🔨
Fixing things
Block or report user

Report or block goldsborough

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@goldsborough
goldsborough / download_mnist.py
Created Jan 8, 2019
Python script to download the MNIST dataset
View download_mnist.py
from __future__ import division
from __future__ import print_function
import argparse
import gzip
import os
import sys
import urllib
try:
View minimal.cpp
#include <torch/torch.h>
torch::nn::Linear model(num_features, 1);
torch::optim::SGD optimizer(model->parameters());
auto data_loader = torch::data::data_loader(dataset);
for (size_t epoch = 0; epoch < 10; ++epoch) {
for (auto batch : data_loader) {
auto prediction = model->forward(batch.data);
auto loss = loss_function(prediction, batch.target);
View gist:265a13be401578611d56a9cd4cdf12f6
- Old-style factory functions that accept a type as first argument and size as second argument have been removed. New-style factory functions accepting the size as first argument and [`TensorOptions`](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/core/TensorOptions.h#L14) as last argument should be used instead. For example, replace your call e.g. to `at::ones(torch::CPU(at::kFloat)), {2, 3})` with `torch::ones({2, 3}, at::kCPU)`. This applies to the following functions:
- `arange`
- `empty`
- `eye`
- `full`
- `linspace`
- `logspace`
- `ones`
- `rand`
- `randint`
View pytorch-download-links.md
View sema.cpp
class Semaphore {
public:
void post() {
std::lock_guard<std::mutex> lock(mutex_);
count_ += 1;
cv_.notify_one();
}
void shutdown() {
std::lock_guard<std::mutex> lock(mutex_);
@goldsborough
goldsborough / data_loader.cpp
Created Sep 19, 2018
Stream/Random policy data loader
View data_loader.cpp
namespace torch {
namespace data {
template <typename D = torch::Tensor, typename L = torch::Tensor>
struct Example {
D data;
L label;
};
template <typename D>
View dcgan.py
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
View dcgan.cpp
#include <torch/torch.h>
#include "mnist_reader.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
View gist:77322103fb42cf4677588f9364367212
insert_at_end_unordered_set_small_string(100000 14.41ms 69.42
insert_at_end_sorted_vector_set_small_string(10 353.95ns 2.83M
insert_at_end_sorted_vector_set_small_string(10 7.74us 129.14K
insert_at_end_sorted_vector_set_small_string(10 791.95us 1.26K
insert_at_end_sorted_vector_set_small_string(10 65.09ms 15.36
insert_at_end_sorted_vector_set_small_string(10 6.90s 144.85m
insert_at_end_unordered_set_large_string(100000 27.17ms 36.81
insert_at_end_sorted_vector_set_large_string(10 1.07us 932.14K
insert_at_end_sorted_vector_set_large_string(10 16.40us 60.99K
insert_at_end_sorted_vector_set_large_string(10 507.14us 1.97K
@goldsborough
goldsborough / any.cpp
Created May 10, 2018
Basic implementation of Any
View any.cpp
class Any {
public:
template<typename T>
explicit Any(T&& value) : content_(new Holder<T>(std::forward<T>(value))) {}
Any(const Any& other) : content_(other.content_->clone()) {}
Any(Any&& other) { swap(other); }
You can’t perform that action at this time.