Generate (approximate) counter examples of Fermat's Theorem
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# coding: utf8 | |
""" | |
generate wrong counter-examples of Fermat's theorem | |
see http://www.drgoulu.com/2016/03/25/contre-exemples-au-theoreme-de-fermat-wiles/ | |
""" | |
from __future__ import print_function, division | |
import itertools | |
__author__ = "Philippe Guglielmetti" | |
def check_fermat(a,b,p,m=[2,3,5]): | |
""" | |
:param a,b,p: integers | |
:param m: list of integer (primes) to check for modularity correctness | |
:return: integer c and float relative precision of a^p+b^p=c^p | |
or (false,integer) if sum is wrong modulo m | |
""" | |
left=float(a**p+b**p) | |
c=int(round(left**(1/p))) | |
if c==a: # b is too small | |
return False,0 | |
for m in m: #parity check | |
if (a%m + b%m)%m != c%m: | |
return False,m | |
right=float(c**p) | |
e=abs(left-right)/left # relative precision | |
return c,e | |
print(check_fermat(1782,1841,12,[])) # 1922 Cohen, Simpsons | |
print(check_fermat(3987,4365,12,[2])) # 4472 Cohen, Simpsons | |
print(check_fermat(48767,24576,4,[2])) #49535^4 (5.1023769743e-16) DrG | |
for p in itertools.count(3): #powers infinite loop | |
emin=1e-9 # min precision of first counter-example at this power | |
print('p=%d...'%p) | |
for a in range(3,10000): | |
for b in range(1,a): | |
c,e=check_fermat(a,b,p) | |
if c and e<emin: #only display results that improve precision | |
emin=e | |
print('%d^%d + %d^%d = %d^%d (%s)'%(a,p,b,p,c,p,e)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
used in my blog post (in french) http://www.drgoulu.com/2016/03/25/contre-exemples-au-theoreme-de-fermat-wiles