Created
June 7, 2022 15:33
-
-
Save graebnerc/4a9e5bb95459d8ada31f43141976efe8 to your computer and use it in GitHub Desktop.
Lecture notes and solutions to the exercises of session 13 on multiple linear regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Lecture notes and solutions to the exercises of session 13 on multiple linear regression |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
here::i_am("R/T13-CatVar-MultPlots.R") | |
library(here) | |
library(DataScienceExercises) | |
library(ggplot2) | |
library(dplyr) | |
library(icaeDesign) | |
journal_data <- DataScienceExercises::econjournals %>% | |
dplyr::filter(papers>10, sub_price<5000) | |
# Parallel slopes model---------------- | |
journal_linmod_pslopes <- journal_data %>% | |
ggplot(data = ., aes(x=pages_py, y=sub_price, color=publisher_type)) + | |
geom_point() + | |
geom_parallel_slopes(se = FALSE) + | |
labs(y="Subscription price", x = "Page length") + | |
scale_color_brewer(palette = "Set1", direction = -1) + | |
coord_cartesian(xlim = c(0, 2800)) + | |
theme_icae() + guides(col=guide_legend(title = "Publisher type: ")) + | |
theme(legend.position = "bottom", legend.title = element_text()) | |
journal_linmod_pslopes | |
ggsave(plot = journal_linmod_pslopes, | |
filename = here("output/T13-ParSlopes-Model.pdf"), | |
width = 5.5, height = 3) | |
# Interaction model-------------------- | |
journal_linmod_interact <- journal_data %>% | |
ggplot(data = ., aes(x=pages_py, y=sub_price, color=publisher_type)) + | |
geom_point() + | |
stat_smooth(method="lm", fullrange=TRUE, se=FALSE) + | |
labs(y="Subscription price", x = "Page length") + | |
scale_color_brewer(palette = "Set1", direction = -1) + | |
coord_cartesian(xlim = c(0, 2800)) + | |
theme_icae() + guides(col=guide_legend(title = "Publisher type: ")) + | |
theme(legend.position = "bottom", legend.title = element_text()) | |
journal_linmod_interact | |
ggsave(plot = journal_linmod_interact, | |
filename = here("output/T13-Interaction-Model.pdf"), | |
width = 5.5, height = 3) | |
journal_linmod_interact_zoom <- journal_linmod_interact + | |
coord_cartesian(xlim = c(-10, 500), ylim = c(-10, 500)) + | |
stat_smooth(method="lm", fullrange=TRUE, se=FALSE) + | |
geom_hline(yintercept = 0) + | |
geom_vline(xintercept = 0) + | |
theme(legend.position = "none") | |
journal_linmod_interact_zoom | |
ggsave(plot = journal_linmod_interact_zoom, | |
filename = here("output/T13-Interaction-Model-Zoomed.pdf"), | |
width = 2.5, height = 4) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
here::i_am("R/T13-CatVar-ViolinPlot.R") | |
library(here) | |
library(ggplot2) | |
library(DataScienceExercises) | |
library(icaeDesign) | |
life_exp <- DataScienceExercises::gdplifexp2007 %>% | |
dplyr::select(continent, lifeExp, gdpPercap) %>% | |
dplyr::mutate(continent=factor(continent)) | |
life_exp_categories_plot <- ggplot( | |
data = life_exp, | |
aes(x=continent, color=continent, fill=continent, y=lifeExp) | |
) + | |
geom_point(alpha=0.25, shape=21) + | |
geom_point( | |
data = life_exp_categories, | |
mapping = aes(x=continent, fill=continent, y=lifeExp_mean), | |
shape = 13, alpha=1.0, size=4) + | |
labs(y="Life Expct.") + | |
theme_icae() + | |
theme( | |
axis.title.x = element_blank(), | |
axis.text = element_text(size=8), | |
axis.title.y = element_text(size=10), | |
panel.grid.minor.y = element_blank(), | |
panel.grid.minor.x = element_blank(), | |
panel.grid.major.x = element_blank() | |
) | |
ggsave(plot = life_exp_categories_plot, | |
filename = here("output/lifeExp_catReg-plot.pdf"), | |
width = 5.5, height = 2.5) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(DataScienceExercises) | |
library(texreg) | |
# This solution explores different specifications, not only the one required | |
# by the exercise on slide 15 | |
beer_data <- DataScienceExercises::beer | |
mult_model_inc <- lm( | |
formula = consumption ~ income, | |
data = beer_data) | |
mult_model_inc_price <- lm( | |
formula = consumption ~ income + price, | |
data = beer_data) | |
mult_model_inc_price_liq <- lm( | |
formula = consumption ~ income + price + price_liquor, | |
data = beer_data) | |
mult_model_full <- lm( | |
formula = consumption ~ income + price + price_liquor + price_other, | |
data = beer_data) | |
texreg::screenreg( | |
l = list(mult_model_inc, | |
mult_model_inc_price, | |
mult_model_inc_price_liq, | |
mult_model_full), | |
digits = 5) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(DataScienceExercises) | |
library(dplyr) | |
library(skimr) | |
library(moderndive) | |
library(texreg) | |
beer_data <- DataScienceExercises::beer | |
# Slide 14: different regression models---------- | |
simple_model_inc <- lm( | |
formula = consumption ~ income, | |
data = beer_data) | |
simple_model_price <- lm( | |
formula = consumption ~ income, | |
data = beer_data) | |
mult_model_inc_price <- lm( | |
formula = consumption ~ income + price, | |
data = beer_data) | |
texreg::screenreg( | |
l = list( | |
simple_model_inc, | |
simple_model_price, | |
mult_model_inc_price), | |
digits = 5) | |
# Exploratory analysis on slide 18 | |
life_exp <- DataScienceExercises::gdplifexp2007 %>% | |
dplyr::select(continent, lifeExp, gdpPercap) %>% | |
dplyr::mutate(continent=factor(continent)) | |
skimr::skim(life_exp) | |
# Illustrating regressions with categorical LHS------------- | |
cont_linmod <- lm(lifeExp~continent, data = life_exp) | |
get_regression_table(cont_linmod) | |
africa_mean_exp <- life_exp %>% | |
dplyr::filter(continent=="Africa") %>% | |
dplyr::summarise(lifeExp_mean=mean(lifeExp)) %>% | |
dplyr::pull(lifeExp_mean) | |
life_exp_categories <- life_exp %>% | |
dplyr::group_by(continent) %>% | |
dplyr::summarise( | |
lifeExp_mean=mean(lifeExp), | |
diff_africa=lifeExp_mean-africa_mean_exp | |
) | |
cont_linmod | |
# For the violin plot see T13-CatVar-ViolinPlot.R | |
# Estimations for multiple regression part----------------- | |
# For the plots see T13-CatVar-MultPlots.R | |
journal_data <- DataScienceExercises::econjournals %>% | |
dplyr::filter(papers>10, sub_price<5000) | |
# The parallel slopes model: | |
journal_linmod_psm <- lm( | |
formula = sub_price~pages_py+publisher_type, | |
data = journal_data) | |
get_regression_table(journal_linmod_psm) | |
# The interaction model: | |
journal_linmod_intct <- lm(sub_price~pages_py*publisher_type, data = journal_data) | |
get_regression_table(journal_linmod_intct) | |
# Model selection using R-squared---------------- | |
summary(journal_linmod_intct)[["r.squared"]] | |
summary(journal_linmod_intct)[["adj.r.squared"]] | |
summary(journal_linmod_psm)[["r.squared"]] | |
summary(journal_linmod_psm)[["adj.r.squared"]] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment