Skip to content

Instantly share code, notes, and snippets.

@graebnerc
Last active June 2, 2023 09:32
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save graebnerc/ad69c3d843b8e20da23f99752082ae43 to your computer and use it in GitHub Desktop.
The script used during session 14 on sampling theory, as well as possible solutions to the exercises.
This is the script we used during the lecture. For a version that is better documented but essentially covers the same issues, see the tutorial on Monte Carlo Simulations:
https://euf-datascience-spring23.netlify.app/tutorial/mcs/pubdir/onlinecontent.html
here::i_am("CentralLimit.R")
library(here)
library(purrr)
library(tibble)
library(data.table)
library(ggplot2)
library(ggpubr)
library(icaeDesign)
set.seed(123)
# Population with 5000 exponentially distributed values
N <- 5000
exp_par <- 2
population <- rexp(n = N, rate = exp_par)
population_tab <- tibble("pop_n" = population)
true_mean <- mean(population)
population_plot <- ggplot(data = population_tab, aes(x = pop_n)) +
geom_histogram(aes(y = after_stat(density))) +
scale_y_continuous(expand = expansion(add = c(0, 0.05))) +
labs(title = "The population", y = "Density") +
theme_icae() +
theme(axis.title.x = element_blank())
population_plot
# Visualization of the 'true population':
# MCS
iterations <- 500
sample_sizes <- c(5, 10, 20, 50)
mean_dist_list <- list()
for (i in seq_along(sample_sizes)){
sample_size <- sample_sizes[i]
sample_means <- rep(NA, iterations)
for (j in seq_len(iterations)){
sample_drawn <- sample(population, size = sample_size, replace = FALSE)
sample_means[[j]] <- mean(sample_drawn)
}
sample_means_tab <- tibble(
"sample_size"=sample_size,
"sample_means"=sample_means
)
mean_dist_list[[sample_size]] <- sample_means_tab
}
full_results <- data.table::rbindlist(mean_dist_list)
hist_plot <- ggplot(data = full_results, aes(x=sample_means)) +
geom_histogram(aes(y=after_stat(density)), alpha=0.5, color="#00395B", fill="#00395B") +
scale_y_continuous(expand = expansion(add = c(0, 0.05))) +
scale_x_continuous(limits = c(-0.2, 1.2), expand = expansion()) +
facet_wrap(~sample_size, ncol = 4) +
stat_function(
data = dplyr::filter(full_results, sample_size==5),
fun = dnorm,
args = list(
mean = mean(dplyr::filter(full_results, sample_size==5)$sample_means),
sd = sd(dplyr::filter(full_results, sample_size==5)$sample_means))
) +
stat_function(
data = dplyr::filter(full_results, sample_size==10),
fun = dnorm,
args = list(
mean = mean(dplyr::filter(full_results, sample_size==10)$sample_means),
sd = sd(dplyr::filter(full_results, sample_size==10)$sample_means))
) +
stat_function(
data = dplyr::filter(full_results, sample_size==20),
fun = dnorm,
args = list(
mean = mean(dplyr::filter(full_results, sample_size==20)$sample_means),
sd = sd(dplyr::filter(full_results, sample_size==20)$sample_means))
) +
stat_function(
data = dplyr::filter(full_results, sample_size==50),
fun = dnorm,
args = list(
mean = mean(dplyr::filter(full_results, sample_size==50)$sample_means),
sd = sd(dplyr::filter(full_results, sample_size==50)$sample_means))
) +
labs(x = "Sample means", y = "Density", title = "The sampling distributions") +
theme_icae()
hist_plot
---
title: "Exercise 2"
author: "Claudius Gräbner-Radkowitsch"
date: "June 2, 2023"
format: html
execute:
echo: false
warning: false
messsage: false
---
```{r}
library(purrr)
library(dplyr)
library(tidyr)
library(ggplot2)
library(kableExtra)
library(DataScienceExercises)
library(icaeDesign)
student_pop <- DataScienceExercises::EUFstudents
true_vals <- student_pop %>%
group_by(Gender) %>%
summarise(
Mean=mean(Height), SD=sd(Height)
)
```
# Task
*Consider the previous example where you studied the height of selected EUF students to make a statement about average height of all EUF students. Describe the various elements using the terminology we have introduced above. Make sure you make use of the following concepts:*
- *Population Sample and sample size*
- *Point estimate*
- *Sampling distribution*
- *Standard error*
- *Properties of the sample and inference*
# Possible solution
The *population* is the set of all students enrolled at the EUF
($N=$ `r nrow(student_pop)`). We are interested in the
*population parameter* 'average height'.
The *sample* is set of randomly drawn students from the population.
We consider two cases, one with $n=10$ and one with $n=20$. We can assume
the sample is a viable random sample, i.e. that it is unbiased and
representative of the population.
The *point estimate* is the sample mean, which is used to estimate the
population parameter of interest. This is viable since, given our
assumptions, statements about the sample can be generalised to the population.
The sampling distribution visualizes the sampling variation, i.e. the
variation of the point estimate obtained from different random samples.
While in reality the sampling distribution remains unknown due to the fact that
only one sample can be drawn, in the present case we used an artificial
population and a Monte Carlo Simulation to characterize the sampling
distribution as follows:
```{r}
#| echo: false
#| include: true
set.seed(123)
reps <- 1000
samp_size10 <- map_dbl(
.x = seq_len(reps),
.f = ~mean(sample(x = student_pop[["Height"]],
size = 10,
replace = FALSE))
)
samp_size50 <- map_dbl(
.x = seq_len(reps),
.f = ~mean(sample(x = student_pop[["Height"]],
size = 50,
replace = FALSE)))
full_samples <- rbind(
tibble("samplesize"="Sample size: 10", "mean"=samp_size10),
tibble("samplesize"="Sample size: 50", "mean"=samp_size50)
)
sampling_plot <- ggplot(data = full_samples, aes(x=mean)) +
geom_histogram(alpha=0.5, color="#00395B", fill="#00395B", binwidth = 0.5) +
scale_y_continuous(expand = expansion(add = c(0, 10))) +
scale_x_continuous(limits = c(158, 178), expand = expansion()) +
geom_vline(xintercept = filter(true_vals, Gender=="total") %>% pull(Mean)) +
facet_wrap(~samplesize, nrow = 2) +
labs(
x = "Sample means",
y = "Count",
title = "The sampling distributions") +
theme_icae()
sampling_plot
```
The *standard error* corresponds to the standard deviation of the sampling
distributions and, due to the MCS framework, can be computed directly:
```{r}
sample_props <- full_samples %>%
group_by(samplesize) %>%
summarise(`Mean`=mean(mean),
`Variation`=sd(mean)) %>%
rename(` `=samplesize) %>%
kable(digits = 3)
sample_props
```
# Possible solution for exercise 1: Monte Carlo Simulation
here::here("R/exercise_EUFstudents.R")
library(here)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggpubr)
library(purrr)
# remotes::install_github("graebnerc/DataScienceExercises")
library(DataScienceExercises)
# remotes::install_github("graebnerc/icaeDesign")
library(icaeDesign)
student_pop <- DataScienceExercises::EUFstudents
# 1. Look up true values------------------
# While not asked explicitly, we also look at different values for the two
# genders considered in the data:
true_vals <- student_pop %>%
group_by(Gender) %>%
summarise(
Mean=mean(Height), SD=sd(Height)
)
true_vals2 <- student_pop %>%
summarise(
Mean=mean(Height), SD=sd(Height)
) %>%
dplyr::mutate(Gender="total") %>%
dplyr::select(Gender, Mean, SD)
true_vals <- rbind(true_vals, true_vals2)
true_vals
# 2. Study sampling distribution
reps <- 1000
## 2a) Alternative 1: draw samples using purrr-------------
set.seed(123)
samp_size10 <- map_dbl(
.x = seq_len(reps),
.f = ~mean(sample(x = student_pop[["Height"]],
size = 10,
replace = FALSE))
)
samp_size50 <- map_dbl(
.x = seq_len(reps),
.f = ~mean(sample(x = student_pop[["Height"]],
size = 50,
replace = FALSE)))
full_samples <- rbind(
tibble("samplesize"="Sample size: 10", "mean"=samp_size10),
tibble("samplesize"="Sample size: 50", "mean"=samp_size50)
)
## 2b) Alternative 2: draw samples using for loop----------
set.seed(123)
samp_size10_loop <- rep(NA, reps)
samp_size50_loop <- rep(NA, reps)
for (i in seq_len(reps)){
sample_small <- sample(
x = student_pop[["Height"]],
size = 10, replace = FALSE)
sample_small_mean <- mean(sample_small)
samp_size10_loop[i] <- sample_small_mean
sample_large <- sample(
x = student_pop[["Height"]],
size = 10, replace = FALSE)
sample_large_mean <- mean(sample_large)
samp_size50_loop[i] <- sample_large_mean
}
# 3. Visualization------------------------
sampling_plot <- ggplot(data = full_samples, aes(x=mean)) +
geom_histogram(alpha=0.5, color="#00395B", fill="#00395B", binwidth = 0.5) +
scale_y_continuous(expand = expansion(add = c(0, 10))) +
scale_x_continuous(limits = c(158, 178), expand = expansion()) +
geom_vline(xintercept = filter(true_vals, Gender=="total") %>% pull(Mean)) +
facet_wrap(~samplesize, nrow = 2) +
labs(
x = "Sample means",
y = "Count",
title = "The sampling distributions") +
theme_icae()
sampling_plot
# 5. Quantitative results--------------
sample_props <- full_samples %>%
group_by(samplesize) %>%
summarise(`Mean`=mean(mean),
`Variation`=sd(mean)) %>%
rename(` `=samplesize)
sample_props
# Optional: visualization of the population----------------
population_plot_sep <- ggplot(data = student_pop, aes(x = Height)) +
geom_histogram(
data = filter(student_pop, Gender=="female"), aes(y = after_stat(density)),
color="black", fill=icaeDesign::get_euf_colors("red") , alpha=0.5) +
geom_histogram(
data = filter(student_pop, Gender=="male"), aes(y = after_stat(density)),
color="black", fill=icaeDesign::get_euf_colors("lightblue"), alpha=0.5) +
scale_y_continuous(expand = expansion(), limits = c(0, 0.1)) +
labs(title = "Gender differentiated", y = "Density") +
stat_function(fun = dnorm, color=icaeDesign::get_euf_colors("red"),
args = list(
mean = true_vals[["Mean"]][1],
sd = true_vals[["SD"]][1])
) +
stat_function(fun = dnorm, color=icaeDesign::get_euf_colors("lightblue"),
args = list(
mean = true_vals[["Mean"]][2],
sd = true_vals[["SD"]][2])
) +
theme_icae() +
theme(axis.title.x = element_blank())
population_plot_sep
population_plot_full <- ggplot(data = student_pop, aes(x = Height)) +
geom_histogram(aes(y = after_stat(density)),
color="black", fill=icaeDesign::get_euf_colors("blue"), alpha=0.5) +
scale_y_continuous(expand = expansion(), limits = c(0, 0.06)) +
labs(title = "Complete", y = "Density") +
theme_icae() +
theme(axis.title.x = element_blank())
population_plot_full
population_full <- ggarrange(
population_plot_full, population_plot_sep, nrow = 2)
population_full <- annotate_figure(
population_full, top = "The population of EUF students")
# This is the script we used during the lecture. For a version that
# is better documented but essentially covers the same issues, see the
# tutorial on Monte Carlo Simulations:
# https://euf-datascience-spring23.netlify.app/tutorial/mcs/pubdir/onlinecontent.html
here::i_am("R/lecture_script.R")
library(here)
library(tidyr)
library(data.table)
library(dplyr)
library(ggplot2)
library(scales)
library(purrr) #
library(icaeDesign)
# 1. Example for a for-loop---------------
base_list <- list(
"element_1" = c(1, 4, 5, 6),
"element_2" = c(9, 2, 2, 8),
"element_3" = c(4, 3, 0, 7)
)
result <- rep(NA, length(base_list)) # The output container
print(result)
for (i in seq_along(base_list)) { # The looping sequence
result[[i]] <- mean(base_list[[i]]) # The action body
}
print(result)
# Note: I strongly recommend to use the functions seq_len() and seq_along()
# when specifying the looping sequence; while you could also iterate over
# names(base_list) directly, this is less flexible and more prone to errors.
# 2. The MCS workflow---------------------
# 2a) If necessary: create the artificial population
# 2b) Define the random process to be analysed
# 2c) Repeat the random process many times
# 2d) Summarize the simulation results
## 2.a) Create the population---------------
# Ball pid of 5000 balls with 65% white balls
size_population <- 5000
white_balls <- as.integer(size_population*0.65)
grey_balls <- size_population - white_balls
population_tib <- tibble(
"ball_id" = seq(1, 5000),
"ball_color" = c(rep("white", white_balls), rep("grey", grey_balls) )
)
## 2.b) Define the random process-----------
# Draw a sample and compute the share of white balls
# First, make sure you know how to specify the random process:
sample_taken <- sample(
x = population_tib[["ball_color"]],
size = 50, replace = TRUE)
share_white <- sum(sample_taken == "white") / length(sample_taken)
# Then define a function based on the previous code:
#' Draw a sample and compute share of white balls
#' @param sample_size The size of the sample to be drawn
#' @returns A double with the share of white balls in the sample
draw_sample <- function(sample_size){
sample_taken <- sample(
x = population_tib[["ball_color"]],
size = sample_size, replace = TRUE)
share_white <- sum(sample_taken == "white") / length(sample_taken)
return(share_white)
}
draw_sample(50)
## 2.c) Conduct the MCS---------------------
# 1000 samples
# Sample sizes 20, 50 and 1000
n_iterations <- 10000 # When developing the loop, start with 3; once it works,
# you can increase the number
sample_size_used <- 100
simulation_container <- rep(NA, n_iterations)
simulation_container
set.seed(123) # To make the simulation reproducible
for (i in seq_len(n_iterations)){
simulation_container[i] <- draw_sample(sample_size = sample_size_used)
}
simulation_container
# With all cases:
n_samples <- 1000
results_n20 <- rep(NA, n_samples)
results_n50 <- rep(NA, n_samples)
results_n100 <- rep(NA, n_samples)
set.seed(123)
for (i in seq_len(n_samples)){
results_n20[i] <- draw_sample(sample_size = 20)
results_n50[i] <- draw_sample(sample_size = 50)
results_n100[i] <- draw_sample(sample_size = 100)
}
result_table <- tibble(
sample_size20 = results_n20,
sample_size50 = results_n50,
sample_size100 = results_n100
)
## 2d) Analyze results -----------------------
### Quantitative:-------
# The quantitative results (of interest definitely the mean and standard
#. deviation of the sampling distribution)
result_table %>%
pivot_longer(cols = everything(),
names_to = "Sample size",
values_to = "Share of white balls") %>%
mutate(
`Sample size` = as.integer(
stringr::str_remove_all(`Sample size`, "[^0-9.-]"))
) %>%
group_by(`Sample size`) %>%
summarise(
`Mean share` = mean(`Share of white balls`),
`Standard deviation` = sd(`Share of white balls`)
)
### Visual:-------
# A quick-and-dirty-way:
hist(result_table$sample_size20)
# A bit nicer:
ggplot(data = result_table, aes(x=sample_size20)) +
geom_histogram(binwidth = 0.05) + theme_bw() +
scale_x_continuous(limits = c(0, 1)) +
geom_vline(xintercept = 0.65)
# A good visualization:
hist_visualization <- result_table %>%
pivot_longer(cols = everything(),
names_to = "Sample size",
values_to = "Share of white balls") %>%
mutate(
`Sample size` = as.integer(
stringr::str_remove_all(`Sample size`, "[^0-9.-]"))
) %>%
mutate(
`Sample size` = paste0("Sample size: ", as.character(`Sample size`)),
`Sample size` = factor(
`Sample size`,
levels=c("Sample size: 20", "Sample size: 50", "Sample size: 100"),
ordered = TRUE),
) %>%
ggplot(data = ., aes(x=`Share of white balls`)) +
geom_histogram(binwidth = 0.02, fill="#00395B") +
scale_y_continuous(expand = expansion(add = c(0, 1))) +
scale_x_continuous(labels = percent_format()) +
labs(
x = "Share of white balls",
y = "Number of samples",
title = "True share: 65%") +
geom_vline(xintercept = 0.65) +
facet_wrap(~`Sample size`, scales = "fixed") +
theme_icae() +
theme(
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment