Skip to content

Instantly share code, notes, and snippets.

🎯
Focusing

Christian Hundt gravitino

🎯
Focusing
View GitHub Profile
View keybase.md

Keybase proof

I hereby claim:

  • I am gravitino on github.
  • I am hundt (https://keybase.io/hundt) on keybase.
  • I have a public key whose fingerprint is D3F4 A995 7D3A 7400 874C D1A9 C584 38B7 5FAA 47C7

To claim this, I am signing this object:

@gravitino
gravitino / inplace.hpp
Created Feb 11, 2016
Inplace Permutation
View inplace.hpp
#ifndef INPLACE_ALGORITHMS
#define INPLACE_ALGORITHMS
template<
class value_t,
class index_t>
void permute(
value_t * data,
index_t * perm,
index_t length) {
@gravitino
gravitino / rngpu.hpp
Created Feb 11, 2016
lightweight cuRand alternative
View rngpu.hpp
#ifndef RNGPU_HPP
#define RNGPU_HPP
#if defined(__CUDA_ARCH__)
#define INLINE_QUALIFIERS __host__ __device__ __forceinline__
#else
#include <math.h>
#define INLINE_QUALIFIERS inline
#endif
@gravitino
gravitino / cuda_if.cu
Last active Feb 16, 2016
branch divergent-free if in CUDA considered harmful (benchmarked on Titan X)
View cuda_if.cu
#include <iostream>
// error makro
#define CUERR { \
cudaError_t err; \
if ((err = cudaGetLastError()) != cudaSuccess) { \
std::cout << "CUDA error: " << cudaGetErrorString(err) << " : " \
<< __FILE__ << ", line " << __LINE__ << std::endl; \
exit(1); \
} \
@gravitino
gravitino / oss.py
Created Feb 28, 2016
scalable spectral clustering using efficient out of sample extension by estimating the feature transform
View oss.py
import numpy as np
import pylab as pl
#import seaborn as sns
from sklearn.datasets import make_blobs, make_circles
def rbf_kernel(X, beta=None, p=2):
num_data, num_feat = X.shape
kernel = np.zeros((num_data, num_data))
@gravitino
gravitino / mf.py
Created Mar 22, 2017
dense matrix factorization
View mf.py
import tensorflow as tf
import tqdm
def tfmf(D, k,
params_dict={"iters":2**14, "p":2, "h":1E-2, "init":"kmeans"},
regularizer_dict={"lambda_C":1E-3, "lambda_B":1E-3, "p":1}):
m, n = D.shape[0], D.shape[1]
D_con = tf.constant(D)
You can’t perform that action at this time.