Skip to content

Instantly share code, notes, and snippets.

@grillermo
Created March 28, 2020 13:43
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save grillermo/6e453f5c526f5ac32596e79d48305aa8 to your computer and use it in GitHub Desktop.
Save grillermo/6e453f5c526f5ac32596e79d48305aa8 to your computer and use it in GitHub Desktop.
SLEEP AND ADOLESCENCE - Why We Sleep
SLEEP AND ADOLESCENCE
Why do we spend so much time in REM sleep in the womb and early in life, yet switch to a heavier dominance of deep NREM sleep in late childhood and early adolescence? If we quantify the intensity of the deep-sleep brainwaves, we see the very same pattern: a decline in REM-sleep intensity in the first year of life, yet an exponential rise in deep NREM sleep intensity in mid- and late childhood, hitting a peak just before puberty, and then damping back down. What’s so special about this type of deep sleep at this transitional time of life?
Prior to birth, and soon after, the challenge for development was to build and add vast numbers of neural highways and interconnections that become a fledgling brain. As we have discussed, REM sleep plays an essential role in this proliferation process, helping to populate brain neighborhoods with neural connectivity, and then activate those pathways with a healthy dose of informational bandwidth.
But since this first round of brain wiring is purposefully overzealous, a second round of remodeling must take place. It does so during late childhood and adolescence. Here, the architectural goal is not to scale up, but to scale back for the goal of efficiency and effectiveness. The time of adding brain connections with the help of REM sleep is over. Instead, pruning of connections becomes the order of the day or, should I say, night. Enter the sculpting hand of deep NREM sleep.
Our analogy of the Internet service provider is a helpful one to return to. When first setting up the network, each home in the newly built neighborhood was given an equal amount of connectivity bandwidth and thus potential for use. However, that’s an inefficient solution for the long term, since some of these homes will become heavy bandwidth users over time, while other homes will consume very little. Some homes may even remain vacant and never use any bandwidth. To reliably estimate what pattern of demand exists, the Internet service provider needs time to gather usage statistics. Only after a period of experience can the provider make an informed decision on how to refine the original network structure it put in place, dialing back connectivity to low-use homes, while increasing connectivity to other homes with high bandwidth demand. It is not a complete redo of the network, and much of the original structure will remain in place. After all, the Internet service provider has done this many times before, and they have a reasonable estimate of how to build a first pass of the network. But a use-dependent reshaping and downsizing must still occur if maximum network efficiency is to be achieved.
The human brain undergoes a similar, use-determined transformation during late childhood and adolescence. Much of the original structure laid down early in life will persist, since Mother Nature has, by now, learned to create a quite accurate first-pass wiring of a brain after billions of attempts over many thousands of years of evolution. But she wisely leaves something on the table in her generic brain sculpture, that of individualized refinement. The unique experiences of a child during their formative years translate to a set of personal usage statistics. Those experiences, or those statistics, provide the bespoke blueprint for a last round of brain refinement, fn13 capitalizing on the opportunity left open by nature. A (somewhat) generic brain becomes ever more individualized, based on the personalized use of the owner.
To help with the job of refinement and downscaling of connectivity, the brain employs the services of deep NREM sleep. Of the many functions carried out by deep NREM sleep—the full roster of which we will discuss in the next chapter—it is that of synaptic pruning that features prominently during adolescence. In a remarkable series of experiments, the pioneering sleep researcher Irwin Feinberg discovered something fascinating about how this operation of downscaling takes place within the adolescent brain. His findings help justify an opinion you may also hold: adolescents have a less rational version of an adult brain, one that takes more risks and has relatively poor decision-making skills.
Using electrodes placed all over the head—front and back, left side and right, Feinberg began recording the sleep of a large group of kids starting at age six to eight years old. Every six to twelve months, he would bring these individuals back to his laboratory and perform another sleep measurement. He didn’t stop for ten years. He amassed more than 3,500 all-night assessments: a scarcely believable 320,000 hours of sleep recordings! From these, Feinberg created a series of snapshots, depicting how deep-sleep intensity changed with the stages of brain development as the children made their often awkward transition through adolescence into adulthood. It was the neuroscience equivalent of time-lapse photography in nature: taking repeat pictures of a tree as it first comes into bud in the spring (babyhood), then bursts into leaf during the summer (late childhood), then matures in color come the fall (early adolescence), and finally sheds its leaves in the winter (late adolescence and early adulthood).
During mid- and late childhood, Feinberg observed moderate deep-sleep amounts as the last neural growth spurts inside the brain were being completed, analogous to late spring and early summer. Then Feinberg began seeing a sharp rise in deep-sleep intensity in his electrical recordings, right at the time when the developmental needs of brain connectivity switch from growing connections to shedding them; the tree’s equivalent of fall. Just as maturational fall was about to turn to winter, and the shedding was nearly complete, Feinberg’s recordings showed a clear ramping back down in deep NREM-sleep intensity to lower intensity once more. The life cycle of childhood was over, and as the last leaves dropped, the onward neural passage of these teenagers had been secured. Deep NREM sleep had aided their transition into early adulthood.
Feinberg proposed that the rise and fall of deep-sleep intensity were helping lead the maturational journey through the precarious heights of adolescence, followed by safe onward passage into adulthood. Recent findings have supported his theory. As deep NREM sleep performs its final overhaul and refinement of the brain during adolescence, cognitive skills, reasoning, and critical thinking start to improve, and do so in a proportional manner with that NREM sleep change. Taking a closer look at the timing of this relationship, you see something even more interesting. The changes in deep NREM sleep always precede the cognitive and developmental milestones within the brain by several weeks or months, implying a direction of influence: deep sleep may be a driving force of brain maturation, not the other way around .
Feinberg made a second seminal discovery. When he examined the timeline of changing deep-sleep intensity at each different electrode spot on the head, it was not the same. Instead, the rise-and-fall pattern of maturation always began at the back of the brain, which performs the functions of visual and spatial perception, and then progressed steadily forward as adolescence progressed. Most striking, the very last stop on the maturational journey was the tip of the frontal lobe, which enables rational thinking and critical decision-making. Therefore, the back of the brain of an adolescent was more adult-like, while the front of the brain remained more child-like at any one moment during this developmental window of time. fn14
His findings helped explain why rationality is one of the last things to flourish in teenagers, as it is the last brain territory to receive sleep’s maturational treatment. Certainly sleep is not the only factor in the ripening of the brain, but it appears to be a significant one that paves the way to mature thinking and reasoning ability. Feinberg’s study reminds me of a billboard advertisement I once saw from a large insurance firm, which read: “Why do most 16-year-olds drive like they’re missing part of their brain? Because they are.” It takes deep sleep, and developmental time, to accomplish the neural maturation that plugs this brain “gap” within the frontal lobe. When your children finally reach their mid-twenties and your car insurance premium drops, you can thank sleep for the savings.
The relationship between deep-sleep intensity and brain maturation that Feinberg described has now been observed in many different populations of children and adolescents around the world. But how can we be sure that deep sleep truly offers a neural pruning service necessary for brain maturation? Perhaps changes in sleep and brain maturation simply occur at roughly the same time but are independent of each other?
The answer is found in studies of juvenile rats and cats at the equivalent stage to human adolescence. Scientists deprived these animals of deep sleep. In doing so, they halted the maturational refinement of brain connectivity, demonstrating a causal role for deep NREM sleep in propelling the brain into healthy adulthood. fn15 Of concern is that administering caffeine to juvenile rats will also disrupt deep NREM sleep and, as a consequence, delay numerous measures of brain maturation and the development of social activity, independent grooming, and the exploration of the environment—measures of self-motivated learning. fn16
Recognizing the importance of deep NREM sleep in teenagers has been instrumental to our understanding of healthy development, but it has also offered clues as to what happens when things go wrong in the context of abnormal development. Many of the major psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, and ADHD are now considered disorders of abnormal development, since they commonly emerge during childhood and adolescence.
We will return to the issue of sleep and psychiatric illness several times in the course of this book, but schizophrenia deserves special mention at this juncture. Several studies have tracked neural development using brain scans every couple of months in hundreds of young teenagers as they make their way through adolescence. A proportion of these individuals went on to develop schizophrenia in their late teenage years and early adulthood. Those individuals who developed schizophrenia had an abnormal pattern of brain maturation that was associated with synaptic pruning, especially in the frontal lobe regions where rational, logical thoughts are controlled—the inability to do so being a major symptom of schizophrenia. In a separate series of studies, we have also observed that in young individuals who are at high risk of developing schizophrenia, and in teenagers and young adults with schizophrenia, there is a two- to threefold reduction in deep NREM sleep. fn17 Furthermore, the electrical brainwaves of NREM sleep are not normal in their shape or number in the affected individuals. Faulty pruning of brain connections in schizophrenia caused by sleep abnormalities is now one of the most active and exciting areas of investigation in psychiatric illness. fn18
Adolescents face two other harmful challenges in their struggle to obtain sufficient sleep as their brains continue to develop. The first is a change in their circadian rhythm. The second is early school start times. I will address the harmful and life-threatening effects of the latter in a later chapter; however, the complications of early school start times are inextricably linked with the first issue—a shift in circadian rhythm. As young children, we often wished to stay up late so we could watch television, or engage with parents and older siblings in whatever it was that they were doing at night. But when given that chance, sleep would usually get the better of us, on the couch, in a chair, or sometimes flat out on the floor. We’d be carried to bed, slumbering and unaware, by those older siblings or parents who could stay awake. The reason is not simply that children need more sleep than their older siblings or parents, but also that the circadian rhythm of a young child runs on an earlier schedule. Children therefore become sleepy earlier and wake up earlier than their adult parents.
Adolescent teenagers, however, have a different circadian rhythm from their young siblings. During puberty, the timing of the suprachiasmatic nucleus is shifted progressively forward: a change that is common across all adolescents, irrespective of culture or geography. So far forward, in fact, it passes even the timing of their adult parents.
As a nine-year-old, the circadian rhythm would have the child asleep by around nine p.m., driven in part by the rising tide of melatonin at this time in children. By the time that same individual has reached sixteen years of age, their circadian rhythm has undergone a dramatic shift forward in its cycling phase. The rising tide of melatonin, and the instruction of darkness and sleep, is many hours away. As a consequence, the sixteen-year-old will usually have no interest in sleeping at nine p.m. Instead, peak wakefulness is usually still in play at that hour. By the time the parents are getting tired, as their circadian rhythms take a downturn and melatonin release instructs sleep—perhaps around ten or eleven p.m., their teenager can still be wide awake. A few more hours must pass before the circadian rhythm of a teenage brain begins to shut down alertness and allow for easy, sound sleep to begin.
This, of course, leads to much angst and frustration for all parties involved on the back end of sleep. Parents want their teenager to be awake at a “reasonable” hour of the morning. Teenagers, on the other hand, having only been capable of initiating sleep some hours after their parents, can still be in their trough of the circadian downswing. Like an animal prematurely wrenched out of hibernation too early, the adolescent brain still needs more sleep and more time to complete the circadian cycle before it can operate efficiently, without grogginess.
If this remains perplexing to parents, a different way to frame and perhaps appreciate the mismatch is this: asking your teenage son or daughter to go to bed and fall asleep at ten p.m. is the circadian equivalent of asking you, their parent, to go to sleep at seven or eight p.m. No matter how loud you enunciate the order, no matter how much that teenager truly wishes to obey your instruction, and no matter what amount of willed effort is applied by either of the two parties, the circadian rhythm of a teenager will not be miraculously coaxed into a change. Furthermore, asking that same teenager to wake up at seven the next morning and function with intellect, grace, and good mood is the equivalent of asking you, their parent, to do the same at four or five a.m.
Sadly, neither society nor our parental attitudes are well designed to appreciate or accept that teenagers need more sleep than adults, and that they are biologically wired to obtain that sleep at a different time from their parents. It’s very understandable for parents to feel frustrated in this way, since they believe that their teenager’s sleep patterns reflect a conscious choice and not a biological edict. But non-volitional, non-negotiable, and strongly biological they are. We parents would be wise to accept this fact, and to embrace it, encourage it, and praise it, lest we wish our own children to suffer developmental brain abnormalities or force a raised risk of mental illness upon them.
It will not always be this way for the teenager. As they age into young and middle adulthood, their circadian schedule will gradually slide back in time. Not all the way back to the timing present in childhood, but back to an earlier schedule: one that, ironically, will lead those same (now) adults to have the same frustrations and annoyances with their own sons or daughters. By that stage, those parents have forgotten (or have chosen to forget) that they, too, were once adolescents who desired a much later bedtime than their own parents.
You may wonder why the adolescent brain first overshoots in their advancing circadian rhythm, staying up late and not wanting to wake up until late, yet will ultimately return to an earlier timed rhythm of sleep and wake in later adulthood. Though we continue to examine this question, the explanation I propose is a socio-evolutionary one.
Central to the goal of adolescent development is the transition from parental dependence to independence, all the while learning to navigate the complexities of peer-group relationships and interactions. One way in which Mother Nature has perhaps helped adolescents unbuckle themselves from their parents is to march their circadian rhythms forward in time, past that of their adult mothers and fathers. This ingenious biological solution selectively shifts teenagers to a later phase when they can, for several hours, operate independently—and do so as a peer-group collective. It is not a permanent or full dislocation from parental care, but as safe an attempt at partially separating soon-to-be adults from the eyes of Mother and Father. There is risk, of course. But the transition must happen. And the time of day when those independent adolescent wings unfold, and the first solo flights from the parental nest occur, is not a time of day at all, but rather a time of night, thanks to a forward-shifted circadian rhythm.
We are still learning more about the role of sleep in development. However, a strong case can already be made for defending sleep time in our adolescent youth, rather than denigrating sleep as a sign of laziness. As parents, we are often too focused on what sleep is taking away from our teenagers, without stopping to think about what it may be adding. Caffeine also comes into question. There was once an education policy in the US known as “No child left behind.” Based on scientific evidence, a new policy has rightly been suggested by my colleague Dr. Mary Carskadon: “No child needs caffeine.”
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment