Skip to content

Instantly share code, notes, and snippets.

@gvyshnya
Created August 5, 2017 19:48
Show Gist options
  • Save gvyshnya/50e5ea3efa9771d2e7cc121c2f1a04e4 to your computer and use it in GitHub Desktop.
Save gvyshnya/50e5ea3efa9771d2e7cc121c2f1a04e4 to your computer and use it in GitHub Desktop.
Forecasting vine sales with GBM model
# Competition: https://inclass.kaggle.com/c/pred-411-2016-04-u3-wine/
# This is a file to perform
# - GBM model training
# - predition on the imputed testing set, using the fitted GBM model (for regression problem,
# gaussian distribution used in GBM)
# - preparation of a Kaggle submission file
# It is intended to run from a command line in a batch mode, using the Rscript command like one below:
# Rscript --vanilla code/GBM.R data/train_imputed.csv data/test_imputed.csv 5000 5 4 25 output/submission.csv code/config.R
#
# 8 arguments are required
# - input file name for imputed training data csv,
# - input file name for imputed testing data csv
# - number of trees to generate in GBM search (integer)
# - depth of GBM Search (integer)
# - number of folds in the internal GBM cross-validation (integer)
# - minimum number of observations in a bucket in order to make another tree split in GBM search (integer)
# - output file name for the result submission csv file (in a ready-for-Kaggle-upload format)
# - the configuration file of the solution implemented as an R script (this is 'code/config.R' by default)
#
# Note: please refer to http://www.inside-r.org/packages/cran/gbm/docs/gbm for more details
# on each of the GBM-specific int parameters above
library(caret)
library(plyr)
library(dplyr)
library(caTools)
library(gbm)
strt<-Sys.time()
args = commandArgs(trailingOnly=TRUE)
if (!length(args)==8) {
stop("Eight arguments must be supplied (input file name for inputed traing data csv,
input file name for imputed testing data csv,
split ration value (0..1), seed value,
output file name for Kaggle result submission csv,
solution configuration file 'code/config.R')", call.=FALSE)
}
fname_training_set <- args[1]
fname_testing_set <- args[2]
n.trees <- args[3]
n.depth <- args[4]
n.folds <- args[5]
n.minobservationbucket <- args[6]
fname_kaggle_submission <- args[7]
fname_config <- args[8]
source(fname_config) # import the config file as R source as it is the R source code indeed
# regression modeller - GBM
# ref.: http://www.inside-r.org/packages/cran/gbm/docs/gbm
gbmRegressionModeller <- function (df.train, df.test, formula2verify, ntrees,
depth, nfolds, minobservations) {
print(paste0("Running gbm gaussian modeller"))
gbm1 <-
gbm(formula2verify, # formula
data=df.train, # training dataset
distribution="gaussian", # (squared error) - used in regression
n.trees=ntrees, # number of trees
shrinkage=0.001, # shrinkage or learning rate,
# 0.001 to 0.1 usually work
interaction.depth=depth, # 1: additive model, 2: two-way interactions, etc.
bag.fraction = 0.5, # subsampling fraction, 0.5 is probably best
train.fraction = 0.5, # fraction of data for training,
# first train.fraction*N used for training
n.minobsinnode = minobservations, # minimum total weight needed in each node
cv.folds = nfolds, # do n-fold cross-validation
keep.data=TRUE, # keep a copy of the dataset with the object
verbose=FALSE) # don't print out progress
# check performance using an out-of-bag estimator
# OOB underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1,method="OOB")
print(best.iter)
# check performance using a 50% heldout test set
best.iter <- gbm.perf(gbm1,method="test")
print(best.iter)
# check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1,method="cv")
print(best.iter)
# plot the performance # plot variable influence
summary(gbm1,n.trees=1) # based on the first tree
summary(gbm1,n.trees=best.iter) # based on the estimated best number of trees
# compactly print the first and last trees for curiosity
print(pretty.gbm.tree(gbm1,1))
print(pretty.gbm.tree(gbm1,gbm1$n.trees))
# predict on the new data using "best" number of trees
# f.predict generally will be on the canonical scale (logit,log,etc.)
f.predict <- predict(gbm1,df.test,best.iter)
f.predict
}
# read data
print(paste("Load data",Sys.time()))
train <- read.csv(fname_training_set)
test <- read.csv(fname_testing_set)
str(train)
str(test)
# basic split of test and train set by STARS provided or not
train1 <- subset(train, STARS == 0)
train2 <- subset(train, STARS > 0)
test1 <- subset(test, STARS == 0)
test2 <- subset(test, STARS > 0)
testIndex1 <- test1$INDEX
testIndex2 <- test2$INDEX
# prepare data for prediction
train1 <- select(train1, -INDEX, -STARS)
train2 <- select(train2, -INDEX)
test1 <- select(test1, -INDEX, -STARS)
test2 <- select(test2, -INDEX)
# train the models
print(paste("Train the models and make predictions",Sys.time()))
frm <- as.formula(TARGET ~ .)
predict1 <- gbmRegressionModeller(train1, test1, frm,
ntrees = n.trees, depth = n.depth, nfolds = n.folds,
minobservations = n.minobservationbucket)
predict2 <- gbmRegressionModeller(train2, test2, frm,
ntrees = n.trees, depth = n.depth, nfolds = n.folds,
minobservations = n.minobservationbucket)
# prepare submission
print(paste("Prepare submission file",Sys.time()))
#INDEX,P_TARGET
df1 <- data.frame(INDEX = testIndex1, P_TARGET = predict1)
df2 <- data.frame(INDEX = testIndex2, P_TARGET = predict2)
MySubmission <- rbind(df1,df2)
write.csv(MySubmission, fname_kaggle_submission, row.names=FALSE)
print(paste("Finished data submission",Sys.time()))
print(paste("Elapsed Time:",(Sys.time() - strt)))
##################################################
# That's all, folks!
##################################################
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment