Created
September 2, 2020 19:16
-
-
Save gvyshnya/ee61c83111ae043f7a49b8829ba994bc to your computer and use it in GitHub Desktop.
Audio Feature Extraction from Audio Files using Librosa
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def extract_feature_means(audio_file_path: str) -> pd.DataFrame: | |
# config settings | |
number_of_mfcc = c.NUMBER_OF_MFCC | |
# 1. Importing 1 file | |
y, sr = librosa.load(audio_file_path) | |
# Trim leading and trailing silence from an audio signal (silence before and after the actual audio) | |
signal, _ = librosa.effects.trim(y) | |
# 2. Fourier Transform | |
# Default FFT window size | |
n_fft = c.N_FFT # FFT window size | |
hop_length = c.HOP_LENGTH # number audio of frames between STFT columns (looks like a good default) | |
# Short-time Fourier transform (STFT) | |
d_audio = np.abs(librosa.stft(signal, n_fft=n_fft, hop_length=hop_length)) | |
# 3. Spectrogram | |
# Convert an amplitude spectrogram to Decibels-scaled spectrogram. | |
db_audio = librosa.amplitude_to_db(d_audio, ref=np.max) | |
# 4. Create the Mel Spectrograms | |
s_audio = librosa.feature.melspectrogram(signal, sr=sr) | |
s_db_audio = librosa.amplitude_to_db(s_audio, ref=np.max) | |
# 5 Zero crossings | |
# #6. Harmonics and Perceptrual | |
# Note: | |
# | |
# Harmonics are characteristichs that represent the sound color | |
# Perceptrual shock wave represents the sound rhythm and emotion | |
y_harm, y_perc = librosa.effects.hpss(signal) | |
# 7. Spectral Centroid | |
# Note: Indicates where the ”centre of mass” for a sound is located and is calculated | |
# as the weighted mean of the frequencies present in the sound. | |
# Calculate the Spectral Centroids | |
spectral_centroids = librosa.feature.spectral_centroid(signal, sr=sr)[0] | |
spectral_centroids_delta = librosa.feature.delta(spectral_centroids) | |
spectral_centroids_accelerate = librosa.feature.delta(spectral_centroids, order=2) | |
# spectral_centroid_feats = np.stack((spectral_centroids, delta, accelerate)) # (3, 64, xx) | |
# 8. Chroma Frequencies¶ | |
# Note: Chroma features are an interesting and powerful representation | |
# for music audio in which the entire spectrum is projected onto 12 bins | |
# representing the 12 distinct semitones ( or chromas) of the musical octave. | |
# Increase or decrease hop_length to change how granular you want your data to be | |
hop_length = c.HOP_LENGTH | |
# Chromogram | |
chromagram = librosa.feature.chroma_stft(signal, sr=sr, hop_length=hop_length) | |
# 9. Tempo BPM (beats per minute)¶ | |
# Note: Dynamic programming beat tracker. | |
# Create Tempo BPM variable | |
tempo_y, _ = librosa.beat.beat_track(signal, sr=sr) | |
# 10. Spectral Rolloff | |
# Note: Is a measure of the shape of the signal. It represents the frequency below which a specified | |
# percentage of the total spectral energy(e.g. 85 %) lies. | |
# Spectral RollOff Vector | |
spectral_rolloff = librosa.feature.spectral_rolloff(signal, sr=sr)[0] | |
# spectral flux | |
onset_env = librosa.onset.onset_strength(y=signal, sr=sr) | |
# Spectral Bandwidth¶ | |
# The spectral bandwidth is defined as the width of the band of light at one-half the peak | |
# maximum (or full width at half maximum [FWHM]) and is represented by the two vertical | |
# red lines and λSB on the wavelength axis. | |
spectral_bandwidth_2 = librosa.feature.spectral_bandwidth(signal, sr=sr)[0] | |
spectral_bandwidth_3 = librosa.feature.spectral_bandwidth(signal, sr=sr, p=3)[0] | |
spectral_bandwidth_4 = librosa.feature.spectral_bandwidth(signal, sr=sr, p=4)[0] | |
audio_features = { | |
"file_name": audio_file_path, | |
"zero_crossing_rate": np.mean(librosa.feature.zero_crossing_rate(signal)[0]), | |
"zero_crossings": np.sum(librosa.zero_crossings(signal, pad=False)), | |
"spectrogram": np.mean(db_audio[0]), | |
"mel_spectrogram": np.mean(s_db_audio[0]), | |
"harmonics": np.mean(y_harm), | |
"perceptual_shock_wave": np.mean(y_perc), | |
"spectral_centroids": np.mean(spectral_centroids), | |
"spectral_centroids_delta": np.mean(spectral_centroids_delta), | |
"spectral_centroids_accelerate": np.mean(spectral_centroids_accelerate), | |
"chroma1": np.mean(chromagram[0]), | |
"chroma2": np.mean(chromagram[1]), | |
"chroma3": np.mean(chromagram[2]), | |
"chroma4": np.mean(chromagram[3]), | |
"chroma5": np.mean(chromagram[4]), | |
"chroma6": np.mean(chromagram[5]), | |
"chroma7": np.mean(chromagram[6]), | |
"chroma8": np.mean(chromagram[7]), | |
"chroma9": np.mean(chromagram[8]), | |
"chroma10": np.mean(chromagram[9]), | |
"chroma11": np.mean(chromagram[10]), | |
"chroma12": np.mean(chromagram[11]), | |
"tempo_bpm": tempo_y, | |
"spectral_rolloff": np.mean(spectral_rolloff), | |
"spectral_flux": np.mean(onset_env), | |
"spectral_bandwidth_2": np.mean(spectral_bandwidth_2), | |
"spectral_bandwidth_3": np.mean(spectral_bandwidth_3), | |
"spectral_bandwidth_4": np.mean(spectral_bandwidth_4), | |
} | |
# extract mfcc feature | |
mfcc_df = extract_mfcc_feature_means(audio_file_path, | |
signal, | |
sample_rate=sr, | |
number_of_mfcc=number_of_mfcc) | |
df = pd.DataFrame.from_records(data=[audio_features]) | |
df = pd.merge(df, mfcc_df, on='file_name') | |
return df | |
# librosa.feature.mfcc(signal)[0, 0] | |
def extract_mfcc_feature_means(audio_file_name: str, | |
signal: np.ndarray, | |
sample_rate: int, | |
number_of_mfcc: int) -> pd.DataFrame: | |
mfcc_alt = librosa.feature.mfcc(y=signal, sr=sample_rate, | |
n_mfcc=number_of_mfcc) | |
delta = librosa.feature.delta(mfcc_alt) | |
accelerate = librosa.feature.delta(mfcc_alt, order=2) | |
mfcc_features = { | |
"file_name": audio_file_name, | |
} | |
for i in range(0, number_of_mfcc): | |
# dict.update({'key3': 'geeks'}) | |
# mfcc coefficient | |
key_name = "".join(['mfcc', str(i)]) | |
mfcc_value = np.mean(mfcc_alt[i]) | |
mfcc_features.update({key_name: mfcc_value}) | |
# mfcc delta coefficient | |
key_name = "".join(['mfcc_delta_', str(i)]) | |
mfcc_value = np.mean(delta[i]) | |
mfcc_features.update({key_name: mfcc_value}) | |
# mfcc accelerate coefficient | |
key_name = "".join(['mfcc_accelerate_', str(i)]) | |
mfcc_value = np.mean(accelerate[i]) | |
mfcc_features.update({key_name: mfcc_value}) | |
df = pd.DataFrame.from_records(data=[mfcc_features]) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
what is C?? Thanks