Skip to content

Instantly share code, notes, and snippets.

@haberman
Last active Aug 29, 2015
Embed
What would you like to do?
My failed attempt at making a nice histogram with IPython.
{
"metadata": {
"name": "HistogramFail"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "import random\nimport numpy\nfrom matplotlib import pyplot, axes\nimport pylab\nimport math\n\npylab.rcParams['figure.figsize'] = (14.0, 8.0)\n\nbins = numpy.logspace(-64, 64, base=2)\n\ndef bin_iter(bins):\n for i in range(len(bins) - 1):\n yield (bins[i], bins[i + 1])\n\nx = [long(high - low) for low, high in bin_iter(bins)]\ny = [1 for _ in bin_iter(bins)]\n\nfig = pyplot.figure()\nplot = fig.add_subplot(111)\nplot.set_yscale(\"log\", basey=2)\nplot.set_xscale(\"log\", basex=2)\nplot.hist(x, bins, alpha=0.6, label='x', cumulative=True, histtype='stepfilled')\nplot.legend(loc='upper right')\npyplot.show()",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAHoCAYAAABJtHBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WlglOWht/H/ZCNkgYQ1rEYQNQGUiIIKSBCxICooi6CI\nIIiyBBJRqRalsmagpwHUotR9abX1eLQeFWtbYltaW1tp9VitS42ZZEJCCCFMQpbJPO+HLq+1YpLJ\nzNwz81y/jzTPzHUXCPmbPDMOy7IsAQAAAECYiTEdAAAAAABfhbECAAAAICwxVgAAAACEJcYKAAAA\ngLDEWAEAAAAQlhgrAAAAAMISYwUAAABAWGKsAAAAAAhLfo+V4uJiTZgwQcuXL9ebb74ZyCYAAAAA\n8H+sxMTEKDU1VU1NTRo4cGAgmwAAAABADsuyLH8utCxLDodDVVVVuvXWW/X0008Hug0AAACAjbX5\nnRWXy6VJkyZp+PDhGjFihHbv3i1JcjgckqS0tDQ1NTUFtxIAAACA7cS19QHx8fEqKirSqFGj5PF4\nNHr0aE2ZMkUffvihXn/9ddXW1iovLy8UrQAAAABspMM/BjZz5kzl5eVp8uTJwWoCAAAAgLa/s/JF\nJSUlOnjwoMaOHdvua3r16qUjR450OAwAAACAPQwdOlSffPLJf/x6u8eKx+PR7NmztWvXLqWkpLT7\niY8cOSI/7+GPWLm5uSouLjadEVKc2R44sz1wZnvgzPbAme0hGs78z/vhv6xdL13c0tKiWbNmacGC\nBZo5c2ZAw6JRZmam6YSQ48z2wJntgTPbA2e2B85sD9F85jbHimVZWrJkibKzs5Wfnx+KpogXzX9g\nToYz2wNntgfObA+c2R44sz1E85nbHCsHDhzQ008/rf379ysnJ0c5OTnat29fKNoiVm5urumEkOPM\n9sCZ7YEz2wNntgfObA/RfGa/3xSy3U/gcNjunhUAAAAA7XeyzdChVwMDAAAAEHo9evTQ0aNHTWd0\nWnp6umpqatr98XxnBQAAAAhz0fI19cnOcbJfb9ergQEAAABAqDFWAAAAAIQlxgoAAACAsMRYAQAA\nABCWeDUwAAAAIAItXnyrKirqg/b4/fol67HHvhu0x28PxgoAAAAQgSoq6nXKKQ8F7fE///zmoD12\ne/FjYAAAAAD89umnn6pnz546ePCgJMntdqt379765S9/2enHZqwAAAAA8NvQoUPldDq1YMECnThx\nQosXL9bixYt10UUXdfqxGSsAAAAAOmXp0qU67bTTNGbMGFVWVmrLli0BeVzGCgAAAIBOW7p0qd5/\n/33l5eUpPj4+II/JWAEAAADQKR6PR/n5+Vq6dKk2bNigo0ePBuRxGSsAAAAAOmXNmjUaM2aM9u7d\nq+nTp+uWW24JyOPy0sUAAABABOrXLzmoLy/cr19yuz7upZde0k9/+lO99957kqTvfve7GjVqlH74\nwx9q/vz5nWpwWJZldeoR2noCh0NBfgoAAAAgqkXL19QnO8fJfp0fAwMAAAAQlhgrAAAAAMISYwUA\nAABAWGKsAAAAAAhLjBUAAAAAYYmxAgAAACAs8T4rAAAAQJhLT0+Xw+EwndFp6enpHfp43mcFAAAA\ngFEn2wx8ZwUAAACA31paWlRfX+/39TExJ78zhbECAAAAwG979z6tl19+V7Gx8R2+1uttUrdujSf9\n3xkrAAAAAPzW0NCipKQF6t17dIeua2o6qkOHvqPly6/W88/v/cqP4dXAAAAAAIRUc3OdKiqKtGZN\nri6+eOJJP46xAgAAACBkWlo8crt3asWK8zVt2pSv/VjGCgAAAICQ8HobVF6+S0uWnKUrr5zW5sdz\nzwoAAABgY6+99jO98MKv/L6+urpWMTFj2vw4r7dRLtd9uv76YZozZ0a73jeGsQIAAADY2OefV6is\nbIx69erYDfL/lJLiUNeuvb/2Y1pbm1VW9j3NmTNACxbMafcbXDJWAAAAAJtLSOiupKSMoDy2z+eV\ny/WgrrwyXUuXXtfuoSJxzwoAAACAIPH5WuVyfV9TpyZq+fIbOjRUJMYKAAAAgCCwLJ9crkeVm+tT\nXt6NX/tO9SfDj4EBAAAAEay6ulqffPKJ39cfPlwl6dTABUmyLEsu15O68MJ6rV27UnFx/s0OxgoA\nAAAQwd54o1gPPfRXpaT08+t6ny9d6emZAeuxLEtlZT/U6NHVWrcuT/Hx8X4/FmMFAAAAiGCWJSUn\nj9GAAV//BouhabFUXv68Ro4s1fr1+erSpUunHo97VgAAAAAEhNv9ss4446/asGG1EhMTO/14jBUA\nAAAAneZ2v6ZTTz2oe+9do6SkpIA8JmMFAAAAQKdUVPxcAwb8Vps35ys1NTVgj8s9KwAAAIBBH3/8\nsV599Vd+X19S8rmkCYEL6qBDh36p3r1/oa1b16p79+4BfWzGCgAAAGDQRx99pOefb1LPnjl+PkK2\n+vTJDmhTe1VVvaW0tFdVWLhWPXr0CPjjM1YAAAAAw5KTB6hv3/NNZ3TI4cN/VFLSC3I6b1Xv3r2D\n8hzcswIAAACgQ44ceVcJCc/K6VytjIyMoD0PYwUAAABAux09+hc5HE/K6VylgQMHBvW5+DEwAAAA\nAO1SW/uRvN5HtWPHcp1yyilBfz7GCgAAANAJJSUlevHFn8uy/Lv+0KFySf7eXB86dXV/U2PjXhUW\nLtXQoUND8pyMFQAAAKATPv30U734Yr3S0/29QX6kMjKGBbQp0DyeUnk8e7R16yJlZZ0ZsudlrAAA\nAACdlJSUoT59xpjOCIr6erdqa+/Xpk3XauTIESF9bm6wBwAAAPCVGhoqdeTILt1zzxydc07of1SN\nsQIAAADgPzQ2HtHhwzt1111XauzY84w0MFYAAAAA/JumplpVVhbp9tu/oQkTxhnr4J4VAAAA2Fp9\nfb3ee+89v68vKSmRlBqwHtOam+tUUVGk/PyJmjw512gLYwUAAAC29uc//1l33/2qunYd4ucjOJSS\nkh3QJlNaWupVXr5TK1aM0bRpU0znMFYAAACArl2HacCAG0xnGOX1Nqi8fJeWLBmpGTMuM50jiXtW\nAAAAANtrbW1SWdn9uu66oZo7d6YcDofpJEmMFQAAAMDWfL4WuVwPaPbs/rr++rlhM1QkxgoAAABg\nWz6fVy7Xg7riijQtWXJtWA0VibECAAAA2JLP16rS0u/r0ksTtGLFIsXEhN804AZ7AAAARLSysjLt\n2fOcvF7/rvd4jsnnGxbYqDBnWT65XI9p0qRWrV59U1gOFYmxAgAAgAh3+PBhvf22T+npM/x+jL59\nMwJYFN4sy5LL9ZQuvNCjtWtXKi4ufCdB+JYBAAAA7dSlS6rS0k43nRH2LMtSWdmzGj26SuvWrVZ8\nfLzppK8Vnt/vAQAAABBQfx8q/60RI0q0fn2eunTpYjqpTYwVAAAAwAbc7pd1xhkfasOG1UpMTDSd\n0y6MFQAAACDKud37lJn5jjZuXKPk5GTTOe3GWAEAAACiWEXFL9S//wFt3pyv1NRU0zkdwg32AAAA\nMKqyslL/9V+PqbnZ8uv6hoZ6eb2DA1wVHSorf6XevX+ubdvWKi0tzXROhzFWAAAAYFRNTY3ee89S\nevp8vx8jI6NHAIuiQ1XVW+re/RUVFq5Vjx6R+f8PYwUAAADGxcd3VWpqpumMqHH48B+VlPSCCgsL\n1Lt3b9M5fuOeFQAAACCKHDnyruLjn5XTuVr9+vUzndMpjBUAAAAgShw9+oGkJ+V0rtTAgQNN53Qa\nPwYGAAAARIFjxz5WS8sj2rHjFmVmZprOCQjGCgAAABDh6uo+04kTD6mwcKlOO+000zkBw1gBAABA\np7S0tOg3v/mNWltb/bq+srIywEX24vG45PF8T1u3LlJW1pmmcwKKsQIAAIBOKS8v15YtLys+/jw/\nHyFGiYnjAtpkF/X1btXW3qeNG+dr5MgRpnMCjrECAACATktM7Kl+/a4xnWErJ05UqaZmt+65Z7ZG\njz7HdE5QdOrVwOrr63XeeefplVdeCVQPAAAAgDY0Nh5RVVWR7rzzCp1//hjTOUHTqbGyfft2XXMN\nCxoAAAAIlaamWlVWFum22y7VhAnR/eNzfv8Y2BtvvKHs7Gw1NjYGsgcAAADASTQ316miokhr1lyk\nSy6ZZDon6NocKy6XSwsXLlRVVZUcDoeWLVum1atX680331R9fb3+8pe/qGvXrrrsssvkcDhC0QwA\nAADYTktLvcrLd2r58vN02WWXms4JiTbHSnx8vIqKijRq1Ch5PB6NHj1aU6ZM0ebNmyVJTzzxhHr3\n7s1QAQAAAILE6z2h8vLduvHGEZo5c7rpnJBpc6xkZGQoIyNDkpSSkqKsrCy53W5lZWVJkm644Ybg\nFgIAACCompqa9OSTP1Zzs3/vk+LxHJefb7GCdmhtbZLLdZ+uvfZUXXPNVbb6JkGH7lkpKSnRwYMH\nNXbs2A49SW5urjIzM5WZmanc3Fzl5uZ26HoAAAAET21trZ5//s9KTLzK78fo1q1vAIvwTz5fi1yu\n72n27H664YZromaoFBcXq7i4WCUlJSopKTnpx7V7rHg8Hs2ePVu7du1SSkpKh2MAAAAQvhISuioj\n40LTGfgCn8+r0tIHdfnl3bR06XVRM1Qk/cc3ME52tna9dHFLS4tmzZqlBQsWaObMmQEJBAAAAPDV\nfL5WuVwP69JLE7Ry5WLFxHTqHUciVpuntixLS5YsUXZ2tvLz80PRBAAAANiWZfnkcj2uiRO9WrNm\niW2HitSOsXLgwAE9/fTT2r9/v3JycpSTk6N9+/aFog0AAACwFcuy5HI9pQsvPK7bbrtZcXF+vy1i\nVGjz9OPHj5fP5wtFCwAAAGBbfx8qz2r06CqtW7da8fHxppOMs+/3lAAAAIAwYVmWystf0MiRJVq/\nPk9dunQxnRQW7P19JQAAgChgWZY++OADtbS0+HV9bW1tgIvQUW73/2rYsL9ow4ZblZiYaDonbDBW\nAAAAItzx48d1xx0PyOEY7vdjOByjA1iEjqioeF2DB/9BmzbdpuTkZNM5YYWxAgAAEAUsK0kDBqww\nnYEOOnRovzIyfqWtW29Tamqq6Zywwz0rAAAAgAGVlb9Wz55vaNu2AqWlpZnOCUuMFQAAACDEqqp+\np+7d/1eFhfnq2bOn6ZywxVgBAAAAQqi6+h0lJf23CgvXqE+fPqZzwhpjBQAAAAiRmpr3FBf3Qzmd\nq9WvXz/TOWGPsQIAAACEwNGjH8iynpDTuVIDBw40nRMReDUwAAAAIMiOHftYLS2PaMeOW5SZmWk6\nJ2IwVgAAAAyzLEu/+93vdOLECb+ub2xsDHARAun48RI1NDykwsIlOu2000znRBTGCgAAgGFer1cb\nNz4hh+Mivx8jLu7SABYhUDwel+rqHtDWrTcoOzvLdE7EYawAAACEAcuK1aBB801nIIAaGipUW3uf\nNm6cr7POGmk6JyJxgz0AAAAQYCdOVKm6epfWr5+l0aPPMZ0TsRgrAAAAQAA1Nh5RVdVOffObl+uC\nC8aazolojBUAAAAgQJqaanXoUJHWrr1EEyeON50T8RgrAAAAQAA0Nx9XRUWRVq+eoClTLjadExUY\nKwAAAEAntbTUy+3eqZtvPlfTp3/DdE7UYKwAAAAAneD1nlB5+W4tWpStq6663HROVGGsAAAAAH5q\nbW1SWdn9mjcvU/PmXS2Hw2E6KarwPisAAAABcOedhXK76/y61rIsnTjBl2WRxudrkcv1PV19dV8t\nWjSPoRIE/K0AAAAIgHffLVXPnt+WwxHb4WsdDmnIkC5BqEKw+HxelZY+pMsv76abblrAUAkSxgoA\nAECAdOnSUzExHR8riCyW5ZPL9YimTInTihWLFBPDnRXBwv+zAAAAQDtZlk+lpY/pooualZ+/VLGx\njNNgYqwAAAAA7WBZllyuZ3T++cd0++23KC6OH1IKNsYKAAAA0AbLslRW9pxycip0550rFR8fbzrJ\nFhgrAAAAwNewLEvl5S9oxIjPdPfdeerShRdDCBXGCgAAAPA13O5XNGzYX7Rhw2p17drVdI6tMFYA\nAACAk6ioeF2DB7+tTZvylZycbDrHdhgrAAAAwFc4dGi/MjJ+pa1bC5Sammo6x5Z4CQMAAABJr732\nhg4frvH7+tZWXwBrYFpl5QH16PFTbdt2m9LS0kzn2BZjBQAAQNJjj+3T8eOTFRub6Nf1iYk38IaQ\nUeLw4d+rW7eX5XTeqp49e5rOsTXGCgAAwD/063eR4uNTTGfAoOrqg0pMfF5OZ4H69OljOsf2uGcF\nAAAAkFRT83+Ki/uBnM489evXz3QOxHdWAAAAANXWfiif73Ft375SgwYNMp2Df2CsAAAAwNaOHftE\nTU3f144dt+jUU081nYMvYKwAAADAto4fL1FDw4MqLFyqYcOGmc7BlzBWAAAAYEseT5nq6h7Qli0L\nlZ2dZToHX4GxAgAAANtpaKjQ0aO7tWnTfJ199lmmc3ASvBoYAAAAbOXEiSpVV+/S3XfP0ujR55jO\nwddgrAAAAMA2GhtrVFW1U+vWTdcFF4w1nYM28GNgAAAgKnz88ceqqanx+3qvtyWANQhHTU21qqws\n0tq1lyg3d4LpHLQDYwUAAESF7dufkMvVX3FxiX5d39o6Rj17dg1wFcJFc/NxVVTsVF7eOE2ZcrHp\nHLQTYwUAAEQFr1fq02eOunbtbToFYcbrbZDbvUvLlp2jyy+fajoHHcA9KwAAAIhaXm+jysp264Yb\nztTVV19hOgcdxFgBAABAVGptbZLLdZ/mzRus+fNnyeFwmE5CBzFWAAAAEHV8vha5XHt09dV9tGjR\nfIZKhGKsAAAAIKr4fF6Vlj6k6dNTtGzZ9QyVCMZYAQAAQNSwLJ9crkd0ySWxWrlysWJi+HI3kvG7\nBwAAgKjw96HyuC66qFkFBTcpNjbWdBI6ibECAACAiGdZllyuZzRmTK1uv/0WxcXxDh3RgLECAACA\niGZZlsrKfqScnArddddKxcfHm05CgDBWAAAAELEsy5Lb/aKysz/V3XfnqUuXLqaTEEB8fwwAAISF\nlpYWNTY2+n29z+cLYA0iRUXFqxoy5D3de+9ade3a1XQOAoyxAgAAwsK3v12kd95xKybGv5uiGxvj\nNHhwYoCrEM7c7p9q0KDfa/PmtUpOTjadgyBgrAAAgLBw7FizevRYq5SUQaZTEAEOHSpWv36/1JYt\na9WtWzfTOQgS7lkBAABARKmsPKAePV7Xtm0FSk9PN52DIGKsAAAAIGIcPvy2UlN/IqezQD179jSd\ngyBjrAAAACAiVFcfVGLij+V0rlGfPn1M5yAEGCsAAAAIezU1/6fY2B/I6cxT//79TecgRLjBHgAA\nAGGttvZD+XyPa8eOFRo0iBdgsBPGCgAAAMJWXd2nam5+WE7nMg0ZMsR0DkKMsQIAAICwdPz456qv\n36Nt227U6aefbjoHBjBWAAAAEHY8njLV1d2vLVsWavjwbNM5MISxAgAAgLDS0HBIR4/u1saN83T2\n2WeZzoFBvBoYAAAAwsaJE4dVXb1T69dfrXPPHW06B4YxVgAAABAWGhtrVFW1U+vWTdeFF55vOgdh\ngB8DAwAAAXHw4J/0+eelfl9fV3csgDWINM3Nx3ToUJHWrr1YubkTTOcgTDBWAABAQDz33M/1u9/1\nUmJiL7+udzgmq39/3pXcjpqbj8vt3qlVq8bp0ksnm85BGGGsAACAgOnT5wKlpfESs2g/r7dBbvcu\n3XRTjq64YqrpHIQZ7lkBAACAEV5vo1yu3Vq48EzNmnWF6RyEIcYKAAAAQq61tVllZfdr/vzBuvba\nWXI4HKaTEIYYKwAAAAgpn69FLtcezZzZS4sWzWeo4KQYKwAAAAgZn8+r0tK9mjYtSTffvJChgq/F\nWAEAAEBIWJZPLtejuuSSGOXl3aiYGL4UxdfjTwgAAACCzrIslZY+rgkTGlVQcJNiY2NNJyECMFYA\nAAAQVJZlyeV6RmPH1ur2229RXBzvnoH2YawAAAAgaCzLUlnZj5ST49add65QQkKC6SREEL/Hyocf\nfqjly5dr7ty5euSRRwLZBAAAgChgWZbc7heVlfWJ1q9fpcTERNNJiDB+j5UzzzxTe/bs0bPPPqvX\nX389kE0AAACIAm73axoy5D1t3JivpKQk0zmIQJ36MbCXX35Z06dP17x58wLVAwAAgChQUfGGBg16\nS5s35ys5Odl0DiJUm2PF5XJp0qRJGj58uEaMGKHdu3f/63+74oor9Nprr+mJJ54IaiQAAAAiR2Xl\nm+rTp1hbtxaoW7dupnMQwdp8KYb4+HgVFRVp1KhR8ng8Gj16tKZMmaKqqiq98MILamxs1KRJk0LR\nCgAAgsjtdsvtdvt9fX398QDWIFJVVf1GaWn7VFi4Vunp6aZzEOHaHCsZGRnKyMiQJKWkpCgrK0tu\nt1uTJ0/WxIkT2/Ukubm5yszMVGZmpnJzc5Wbm9upaAAAEHhPPPGifvGLeiUmpvl1fWvrIPXp0yfA\nVYgkVVVvKzn5JTmdt6pXr16mcxDGiouLVVxcrJKSEpWUlJz04xyWZVntfdCSkhJNnDhR77//vlJS\nUtp1jcPhUAeeAgAAGLJ58/f0pz+NU8+eZ5tOQQSqrj6ohIQf6L/+q0D9+/c3nYMIc7LN0O4b7D0e\nj2bPnq1du3a1e6gAAAAg+tXUvK/Y2B/I6cxjqCCg2vX2oS0tLZo1a5YWLFigmTNnBrsJAAAAEaK2\n9q/y+R7Tjh0rNHjwYNM5iDJtjhXLsrRkyRJlZ2crPz8/FE0AAACIAHV1n6qp6fvavn2ZhgwZYjoH\nUajNHwM7cOCAnn76ae3fv185OTnKycnRvn37QtEGAACAMHX8+Oeqr39Qmzcv1umnn246B1Gqze+s\njB8/Xj6fLxQtAAAAiAD19eWqq7tfmzcv0IgRw03nIIp16h3sAQAAYC8NDZWqqdmlDRuu0ahRvHIc\ngouxAgAAgHZpbKxWdXWRvvWtq3TeeeeazoENMFYAAADQpqamo6qsLNIdd1ymceMuMJ0Dm2CsAAAA\n4Gs1Nx9TRUWR8vMnadKki0znwEYYKwAAADip5ubjcrt3asWK8zV16iWmc2AzjBUAAAB8Ja+3QeXl\nu7RkydmaMeMy0zmwIcYKAAAA/oPX2yiXa7cWLjxDc+bMMJ0Dm2KsAAAA4N+0tjarrOwBzZs3WNdd\nN1sOh8N0EmyKsQIAAIB/8fla5HLt0cyZPbV48XyGCoxq8x3sAQBAZGhqatKxY8f8vr65uSmANYhE\nPl+rXK7va9q0JN1880KGCoxjrAAAECUef/w5vfDCu4qPT/Treq83Rj16pAW4CpHCsnxyuR7RxRdL\neXk3KiaGH8CBeYwVAACiRGOjV127zlbfvuebTkGEsSxLLteTGj/+hAoKVig2NtZ0EiCJe1YAAABs\n7e9D5Qc677wjuuOO5YqPjzedBPwLYwUAAMCmLMtSWdmPddZZLt1110olJCSYTgL+DWMFAADApsrL\nX1JW1sfasGG1EhP9u9cJCCbGCgAAgA2Vl7+qoUP/rHvvXaOkpCTTOcBXYqwAAADYTEXFzzRo0Fva\nvLlAKSkppnOAk2KsAAAA2MihQ2+qT5/92rq1QN26dTOdA3wtxgoAAIBNVFX9Vunp+1RYWKD09HTT\nOUCbGCsAAAA2cPjwH5Sc/KKcznz16tXLdA7QLowVAACAKHfkyJ+VkPCcnM7V6tu3r+kcoN0YKwAA\nAFGspuZ9xcQ8LadzlQYMGGA6B+iQONMBAAAACI7a2o/U2vqYduxYrlNOOcV0DtBhjBUAAIAoVFf3\nNzU17VVh4U0aOnSo6RzAL4wVAACAKHP8+Oeqr9+jrVsX68wzzzCdA/iNsQIAABBF6uvdOnbsfm3Z\nskAjRgw3nQN0CmMFAAAgSjQ0VKqmZpfuvfcajRp1tukcoNN4NTAAAIAo0NhYrerqnfrWt2bqvPPO\nNZ0DBARjBQAAIMI1NR1VZWWRbr99qsaNu8B0DhAw/BgYAABhora2VmVlZX5ff+xYbQBrECmam+tU\nUVGkgoJJuvjiiaZzgIBirAAAECZ+8pPX9eSTHygpqadf17e2xistjTf9s5OWFo/c7p1aseJ8TZ16\niekcIOAYKwAAhInWVp+6dp2ofv0mmU5BBPB6G1RevktLlpylK6+cZjoHCAruWQEAAIgwXm+jXK77\ntGDBMM2ZM0MOh8N0EhAUjBUAAIAI0trarLKyBzRnzgAtWDCHoYKoxlgBAACIED6fVy7XHl15ZQ8t\nXXodQwVRj7ECAAAQAXy+VpWW7tXUqV21fPkNDBXYAmMFAAAgzFmWTy7Xo5o8WcrLu1ExMXwJB3vg\nTzoAAEAYsyxLLteTGjeuQQUFNykujhdzhX0wVgAAAMKUZVkqK/uhzj33iNatW674+HjTSUBIMVYA\nAADCkGVZKi9/XiNHlupb31qphIQE00lAyDFWAAAAwpDb/bLOOOOv2rBhtRITE03nAEYwVgAAAMKM\n2/2aTj31oO69d42SkpJM5wDGMFYAAADCSEXFz9S//2+0eXO+UlNTTecARjFWAAAAwsShQ79U7977\ntW1bgbp37246BzCOsQIAABAGKit/q7S0V1VYmK8ePXqYzgHCAmMFAADAsMOH/6jk5P+R05mv3r17\nm84BwgZjBQAAwKAjR/6shIRn5XSuVkZGhukcIKwwVgAAAAw5evQvcjiektO5SgMHDjSdA4SdONMB\nAAAAdlRb+5G83ke1Y8dynXLKKaZzgLDEWAEAAAixurq/qbFxrwoLl2ro0KGmc4CwxVgBAAAIIY+n\nVB7PHm3dukhZWWeazgHCGmMFAAAgROrr3aqtvV+bNl2rkSNHmM4Bwh432AMAAIRAQ0OljhzZpXvu\nmaNzzskxnQNEBL6zAgBAgPz+92/rqad+6vf1NTU1cjhmBLAI4aKxsVrV1Tt1111XauzY80znABGD\nsQIAQIC4XOX6y1+GqG/fC/1+jL59+wewCOGgqemoDh0q0h13fEMTJowznQNEFMYKAAABlJCQptRU\nXoYWf9fcXKeKiiLl5+dq8uRc0zlAxOGeFQAAgCBoaamX271Ty5eP1bRpU0znABGJsQIAABBgXm+D\nyst36sY7hcJwAAAeF0lEQVQbR2rGjMtM5wARi7ECAAAQQK2tTSoru1/XXXea5s6dKYfDYToJiFiM\nFQAAgADx+Vrkcj2g2bP76/rr5zJUgE5irAAAAASAz+eVy/WgrrgiTUuWXMtQAQKAsQIAANBJPl+r\nSku/r0svTdCKFYsUE8OXWEAg8DcJAACgEyzLp9LSRzVpUqtWr17CUAECiL9NAAAAfrIsSy7XUxo3\nrl5r196suDjewg4IJMYKAACAHyzLUlnZDzV69GGtW7dc8fHxppOAqMNYAQAA6CDLslRe/t8aObJU\n69evUpcuXUwnAVGJsQIAANBBbvfLOuOMD7Vhw2olJiaazgGiFmMFAACgA9zufcrMfEf33rtGSUlJ\npnOAqMZYAQAAaKeKil+of/8D2rKlQKmpqaZzgKjHWAEAAGiHyspfqXfvn2vbtgJ1797ddA5gC4wV\nAACANlRVvaXu3V9RYWG+evToYToHsA3GCgAAwNc4fPiPSkp6QYWFa9S7d2/TOYCtMFYAAABO4siR\ndxUf/6ycztXq16+f6RzAdhgrAAAAX+Ho0Q8kPSmnc6UGDhxoOgewpTjTAQAAAOHm2LGP5fU+oh07\nliszM9N0DmBbjBUAAIAvqKv7TCdOPKTCwqUaOnSo6RzA1hgrAAAA/+DxuOTxfE9bty5SVtaZpnMA\n2+vUWHnppZf0yiuvqK6uTkuWLNGUKVMC1QUAABBS9fVu1dbep02brtXIkSNM5wBQJ8fKjBkzNGPG\nDNXW1uq2225jrAAAgIh04kSVamp26557Zuucc3JM5wD4h4C8GtjmzZu1atWqQDwUAABASDU2HlFV\nVZHuvPMKnX/+GNM5AL6gXWPF5XJp0qRJGj58uEaMGKHdu3dLkizL0rp16zRt2jSNGjUqqKEAAACB\n1tRUq8rKIt1226WaMGGc6RwAX9KuHwOLj49XUVGRRo0aJY/Ho9GjR2vKlCn62c9+pp///Oeqq6vT\nJ598optvvjnYvQAABI1lWWpsbPT7+paWFkldAheEoGpurlNFRZHWrLlIl1wyyXQOgK/QrrGSkZGh\njIwMSVJKSoqysrLkdruVl5envLy8Nq/Pzc1VZmamMjMzlZubq9zc3E5FAwAQDG+++aYKC3+kmJgE\nvx8jIWFuAIsQLC0t9Sov36nly8/TZZddajoHsJ3i4mIVFxerpKREJSUlJ/04h2VZVkceuKSkRBMn\nTtT777+vlJSUNj/e4XCog08BAIARr7/+unburNfgwVebTkEQeb0nVFZWpMWLz9Q111wlh8NhOgmw\nvZNthg7dYO/xeDR79mzt2rWrXUMFAAAgnLS2Nqms7D5de+1QhgoQAdo9VlpaWjRr1iwtWLBAM2fO\nDGYTAABAwPl8LXK5HtCsWf20cOFchgoQAdo1VizL0pIlS5Sdna38/PxgNwEAAASUz+dVaemDuuKK\nNC1deh1DBYgQ7RorBw4c0NNPP639+/crJydHOTk52rdvX7DbAAAAOs3na5XL9bAuvTRBK1YsUkxM\nQN5mDkAItOvVwMaPHy+fzxfsFgAAgICyLJ9crsc1caJXa9bcwlABIgx/YwEAQFSyLEsu11O68MLj\nuu22mxUX167/RgsgjDBWAABA1Pn7UHlWo0dXad265YqPjzedBMAPjBUAABBVLMtSWdl/a+TIEq1f\nn6cuXbqYTgLgJ8YKAACIKm73/+r00z/Qhg2rlZiYaDoHQCcwVgAAQNRwu/cpM/OP2rQpX8nJyaZz\nAHQSYwUAAESFiopfqH//A9q8OV+pqammcwAEAGMFAABEvMrKX6tXr59p69Z8paWlmc4BECCMFQAA\nENGqqn6n7t3/V4WF+erZs6fpHAABxFgBAAARq7r6HSUl/bcKC9eoT58+pnMABBhjBQAARKSamvcU\nF/dDOZ2r1a9fP9M5AIKAsQIAACLO0aMfyLKekNO5UgMHDjSdAyBI4kwHAAAAdMSxYx+ruflhfec7\ny5WZmWk6B0AQMVYAAEDEqKv7TA0ND6mwcKlOO+000zkAgoyxAgAAIoLH49Lx49/T1q03KDs7y3QO\ngBBgrAAAgLDX0FCh2tr7tHHjfJ111kjTOQBChBvsAQBAWDtxokrV1bt0992zNXr0OaZzAIQQYwUA\nAIStxsYjOnx4p+666wqdf/4Y0zkAQoyxAgAAwlJTU60qK4u0du0UTZgwznQOAAMYKwAAIOw0Nx9X\nRUWR8vIm6JJLJpnOAWAIYwUAAISVlpZ6ud07dfPN52r69G+YzgFgEGMFAACEDa/3hMrLd2vRomxd\nddXlpnMAGMZYAQAAYaG1tUku132aNy9T8+ZdLYfDYToJgGGMFQAAYJzP1yKX63uaNStDixbNY6gA\nkMRYAQAAhvl8XpWWPqjLL++mm25awFAB8C+MFQAAYIxl+eRyPawpU+K1YsUixcTwpQmA/4/PCAAA\nwAjL8qm09DFNnOhVfv5SxcbGmk4CEGYYKwAAIOQsy5LL9YwuuKBOt912s+Li4kwnAQhDjBUAABBS\nlmWprOw5nXPOIX3zmysUHx9vOglAmGKsAACAkLEsS+XlL2jEiM+0fv0qdenSxXQSgDDG91wBAFHF\nsiwj16J93O5XNGzYX7Rhw63q2rWr6RwAYY6xAgCIGn/4wx+0YcP31drq/2PExV0duCD8m4qK1zV4\n8NvatOk2JScnm84BEAEYKwCAqNHQ0CDpIp1yynWmU/Alhw7tV0bGr7R1621KTU01nQMgQnDPCgAA\nCKrKyl+rR4+fatu2AqWlpZnOARBBGCsAACBoDh/+vbp1+185nQXq2bOn6RwAEYaxAgAAgqK6+h0l\nJj4vp3ON+vTpYzoHQARirAAAgICrqXlPcXE/lNOZp379+pnOARChGCsAACCgams/lGU9IadzpQYN\nGmQ6B0AE49XAAABAwBw79omamx/W9u03KzMz03QOgAjHWAEAAAFx/HiJGhoeVGHhEg0bNsx0DoAo\nwFgBAACd5vGUqa7uAW3ZslDZ2VmmcwBECcYKAADolIaGCh09ulubNs3X2WefZToHQBThBnsAAOC3\nEyeqVF29S3ffPUujR59jOgdAlGGsAAAAvzQ2HlFV1U6tWzddF1ww1nQOgCjEWAEAAB3W1FSrQ4eK\ntHbtJcrNnWA6B0CUYqwAAIAOaW4+Lre7SKtXT9CUKRebzgEQxRgrAACg3Vpa6uV279Itt5yr6dO/\nYToHQJRjrAAAgHbxehtVXr5bixZl6aqrLjedA8AGGCsAAKBNra1Ncrnu07x5mZo372o5HA7TSQBs\ngLECAAC+ls/XIpdrj66+uo8WLZrHUAEQMowVAABwUj6fV6WlD2n69BQtW3Y9QwVASDFWAADAV7Is\nn1yuR3TJJbFauXKxYmL4sgFAaPFZBwAA/AfL8qm09DFddFGzCgpuUmxsrOkkADbEWAEAAP/Gsiy5\nXM9o7Nhjuv32WxQXF2c6CYBNMVYAAMC/WJalsrIfKSenQnfdtVLx8fGmkwDYGGMFAABI+vtQKS//\nH2Vnf6q7785Tly5dTCcBsDnGCgAAkCRVVLyq0077P9177xp17drVdA4AMFYAAIDkdv9Ugwb9Xps2\n5Ss5Odl0DgBIYqwAAGB7hw4Vq1+/X2rr1gJ169bNdA4A/AtjBQAAG6usPKAePV7Xtm0FSktLM50D\nAP+GsQIAgE0dPvx7pab+RE5ngXr27Gk6BwD+A2MFAAAbqq4+qMTE5+V0rlGfPn1M5wDAV2KsAABg\nMzU1/6fY2B/I6cxT//79TecAwEnxlrQAANhIbe2H8vke144dKzRo0CDTOQDwtRgrAADYRF3dp2pu\nfljbt9+sIUOGmM4BgDYxVgAAsIHjx0tUX79HhYVLNGzYMNM5ANAujBUAAKKcx1OmuroHtGXLQmVn\nZ5nOAYB2Y6wAABDFGhoO6ejR3dq4cZ7OPvss0zkA0CG8GhgAAFHqxInDqq7eqfXrr9a55442nQMA\nHcZYAQAgCjU21qiqaqfWrZuuCy8833QOAPiFsQIAQJRpaqrVoUNFuvXWi5WbO8F0DgD4jbECAEAU\naW4+roqKnVq1apwuvXSy6RwA6BTGCgAAUcLrbZDbvUs33XSOrrhiqukcAOg0xgoAAFHA622Uy7Vb\nCxeeqVmzrjCdAwABwVgBACDCtbY2qazsfs2fP1jXXjtLDofDdBIABARjBQCACObztcjl2qOrruqt\nRYvmM1QARBXGCgAAEcrn86q09CFNm5asZcuuZ6gAiDqMFQAAIpBl+eRyPapLLolVXt6Nionhn3QA\n0cfvz2yfffaZli5dqjlz5gSyBwAAtMGyLJWWPq4JExpVUHCTYmNjTScBQFD4PVZOPfVUPfzww4Fs\nAQAAbbAsSy7XMxo7tla3336L4uLiTCcBQNDwPWMAACKEZVkqK/uRcnLcuvPOFUpISDCdBABB1eZY\ncblcmjRpkoYPH64RI0Zo9+7doegCAABfYFmW3O4XlZX1idavX6XExETTSQAQdG2Olfj4eBUVFen9\n99/XW2+9pQceeEAffPCBampqdMstt+hPf/qTnE5nKFoBALAtt/tVDRnynjZuzFdSUpLpHAAIiTZ/\n0DUjI0MZGRmSpJSUFGVlZcntdisrK0sPPvhg0AMBAPZRUlKiBx54Tl6v5df19fXH5fONCHCVeRUV\nb2jQoN9p8+bblJycbDoHAEKmQ3fllZSU6ODBgxo7dmyHniQ3N1eZmZnKzMxUbm6ucnNzO3Q9AMAe\nqqqq9O67ierR4wq/H6Nfv74BLDKvsvJN9elTrK1bb1O3bt1M5wBAQBQXF6u4uFglJSUqKSk56ce1\ne6x4PB7Nnj1bu3btUkpKSodjAABoj4SEFHXrNsR0RlioqvqN0tP3qbBwrdLT003nAEDAfPkbGCd7\nU9t2vRpYS0uLZs2apQULFmjmzJkBCQQAACdXVfW2UlJeUmFhvnr16mU6BwCMaHOsWJalJUuWKDs7\nW/n5+aFoAgDA1qqrDyox8cdyOteob9/o+rE2AOiINsfKgQMH9PTTT2v//v3KyclRTk6O9u3bF4o2\nAABsp6bmfcXG/kBO5yr179/fdA4AGNXmPSvjx4+Xz+cLRQsAALZWW/uhfL7HtGPHCg0ePNh0DgAY\n16FXAwMAAMFRV/epmpoe1vbtyzRkCC8wAAASYwUAAOOOH/9cHs8ebdu2WKeffrrpHAAIG4wVAAAM\n8njKVFd3vzZvvl4jRgw3nQMAYYWxAgCAIQ0Nh3T06G5t3DhPo0adbToHAMJOu95nBQAABNaJE4dV\nXb1T69dfrXPPHW06BwDCEmMFAIAQa2o6qqqqnbrjjst04YXnm84BgLDFWAEAIISam4+poqJIt956\nsSZNush0DgCENcYKAAAh0tx8XG73Tq1ceYEuvXSy6RwACHuMFQAAQsDrbVB5+S4tXTpKV145zXQO\nAEQExgoAAEHm9TbK5dqthQvP0OzZV5rOAYCIwVgBACCIWlub5XLdr3nzBuu662bL4XCYTgKAiMFY\nAQAgSHy+Frlce3TVVb20ePF8hgoAdBBjBQCAIPD5vCot3atp05J0880LGSoA4AfGCgAAAWZZPrlc\nj2ryZIfy8m5UTAz/3AKAP/jsCQBAAFmWpdLSJzR+/AndeusyxcbGmk4CgIjFWAEAIEAsy5LL9YzG\njKnRHXcsV1xcnOkkAIhojBUAAALAsiyVlf1Yo0aV6667ViohIcF0EgBEPMYKAAABUF7+krKyPtbd\nd+cpMTHRdA4ARAXGCgAAnVRe/qqGDv2z7r13jZKSkkznAEDUYKwAANAJFRU/06BBb2nz5gKlpKSY\nzgGAqMJYAQDAT4cOvak+ffZr69YCdevWzXQOAEQdxgoAAH6oqvqt0tP3qbCwQOnp6aZzACAqMVYA\nAOigqqq3lZz8P3I689WrVy/TOQAQtRgrAAB0QHX1n9Sly4/kdK5R3759TecAQFRjrAAA0E41Ne8r\nNvYZbd+epwEDBpjOAYCox1vrAgDQDrW1H6m19TF95zsrNHjwYNM5AGALjBUAANpQV/c3NTXt1fbt\nyzRkyBDTOQBgG4wVAAC+xvHjn6u+fo+2bl2s008/3XQOANgKYwUAgJOory/XsWP3a8uWBRoxYrjp\nHACwHcYKAABfoaGhUkeO7NLGjddo1KizTecAgC3xamAAAHxJY2O1Dh8u0vr1V+m88841nQMAtsVY\nAQDgC5qajqqyskh33DFN48ZdYDoHAGyNsQIAwD80N9epoqJI+fmTdPHFE03nAIDtMVYAAJDU0uKR\n212kFSvO19Spl5jOAQCIsQIAgLzeBpWX79KSJWdrxozLTOcAAP6BsQIAsDWvt1FlZfdpwYJhmjNn\nhukcAMAXMFYAALbV2tqssrIHNHfuQC1YMEcOh8N0EgDgCxgrAABb8vm8crn26More+jGG69lqABA\nGGKsAABsx+drVWnpXk2d2lXLl9/AUAGAMMVYAQDYimX5VFr6iCZPlvLyblRMDP8UAkC44jM0AMA2\nLMuSy/Wkxo8/oYKCmxQXF2c6CQDwNRgrAABb+PtQ+YHOPfeI1q1brvj4eNNJAIA2MFYAAFHPsiyV\nlf1YZ53l0re+tVIJCQmmkwAA7cBYAQBEPbf7JzrzzI+0YcNqJSYmms4BALQTYwUAENXKy1/Vqaf+\nSRs35ispKcl0DgCgAxgrAICoVVHxMw0a9JY2b85XSkqK6RwAQAcxVgAAUenQoV+qT5/92rq1QN27\ndzedAwDwA2MFABB1Kit/q7S0V1VYWKD09HTTOQAAPzFWAABR5fDhPyg5+X/kdOarV69epnMAAJ3A\nWAEARI0jR/6shITn5HSuVkZGhukcAEAnMVYAAFGhpuZ9ORxPyelcpYEDB5rOAQAEQJzpAAAAOqu2\n9iO1tj6mHTuW65RTTjGdAwAIEMYKACCi1dX9TY2Ne1VYuFRDhw41nQMACCDGCgAgYnk8pfJ49mjb\ntsXKyjrTdA4AIMAYKwCAiFRf71Zt7f3avPk6jRgx3HQOACAIuMEeABBxGhoqVVOzSxs2zFFOzijT\nOQCAIGGsAAAiSmNjtaqrd+quu2ZozJjzTOcAAIKIsQIAiBhNTUd16FCRbr99qsaPv9B0DgAgyBgr\nAICI0Nxcp4qKIuXn5+riiyeazgEAhABjBQAQ9lpaPHK7d2r58rGaNm2K6RwAQIgwVgAAYc3rbVB5\n+S7deONIzZhxmekcAEAIMVYAAGHL622Uy3WfrrvuNM2dO1MOh8N0EgAghBgrAICw1NrarLKy72nO\nnAG6/vq5DBUAsCHGCgAg7Ph8XrlcD+rKK9O1dOl1DBUAsCnGCgAgrFhWq1yu72vq1EQtX34DQwUA\nbIyxAgAIGz6fT0eO/FG5uT7l5d2omBj+mQIAO3NYlmUF9QkcDgX5KQAAUcCyLC1btkoOh1cPPHC/\n4uPjTScBAELkZJuB/2QFADDOsiw9/vgPdfCgV0OGnM1QAQBIYqwAAAyzLEs/+MHzevbZUvXvf526\ndOliOgkAECYYKwAAo1544WU9+eRfNXDgasXGJprOAQCEEcYKAMCYl19+TXv3vqP+/dcoLi7JdA4A\nIMwwVgAARvz0pz/XAw/8Rv37FyghIdV0DgAgDDFWAAAhV1z8SxUV/UJ9+xYoIaG76RwAQJhirAAA\nQuq3v31LTuer6t07X4mJPUznAADCGGMFABAyf/jDH7Vp0wvq1StfXbv2Np0DAAhzjBUAQEi8++67\n+va3n1V6+molJWWYzgEARADGCgAg6D744AOtX/+kunVbpZSUgaZzAAARIs7fC+vr67VixQp16dJF\nubm5uvbaawPZBQCIEh999JHuuusRJScvV2rqKaZzAAARxO/vrLzwwguaO3eu9u7dq5/85CeBbAIA\nRIm//e1vuvPOvUpIWKpu3YaazgEARBi/x0p5ebkGDRokSYqNjQ1YUDQoLi42nRBynNkeOLM9BOrM\npaWluvPOPYqJWaS0tDMD8pjBwu+zPXBme+DM0aXNseJyuTRp0iQNHz5cI0aM0O7duyVJAwcOlMvl\nkiT5fL7gVkaYaP4DczKc2R44sz0E4sxut1vf/Ob9am29Vj16jOh8VJDx+2wPnNkeOHN0afOelfj4\neBUVFWnUqFHyeDwaPXq0pkyZoquvvlqrVq3SK6+8oiuvvDIUrRGjpKTEdELIcWZ74Mz20NkzV1ZW\nat26XWpsnK3evXMCExVk/D7bA2e2B84cXdocKxkZGcrI+PtLTKakpCgrK0tut1tZWVl69NFHgx4Y\niaL5D8zJcGZ74Mz20JkzezwerVtXpL/+NVU9elTq889f7tD19fVudeK1X/zG77M9cGZ74MzRxWFZ\nltXeDy4pKdHEiRP1/vvvKyUlpV3X9OrVS0eOHPE7EAAAAEB0Gzp0qD755JP/+PV2/+crj8ej2bNn\na9euXe0eKpJUXV3d7o8FAAAAgH9q16uBtbS0aNasWVqwYIFmzpwZ7CYAAAAAaPvHwCzL0g033KCe\nPXuqqKgoVF0AAAAAbK7NsfLrX/9aF110kc466yw5HA5J0rZt2zR16tSQBAIAAACwpw7dYA8AAAAA\noRL77W9/+9vBenDLsrR+/Xq99NJLOnz4sM4++2xJUn19vcaNG6cBAwbo9NNPD9bTG1FcXKzrr79e\nb7/9tlJTU5WZmSkpus8sffX5ovnMH374oe6++249+eSTqqur0znnnCMpus/80ksv6bvf/a6eeeYZ\nde/eXUOHDpUU3Wf+7LPPdPvtt+upp57S3Llz//Xr0XzmL7LLOf/pZP9mRZsv/7n2+XxRf+4vf/4a\nMmRI1J/5y/9O5eTkRP2Z/+mLn7uGDRsW9ef+8teep5xySlSduV032PvrxRdfVHl5uRISEjRw4MB/\n/fr27dt1zTXXBPOpjYmJiVFqaqqamppsc2bpq88XzWc+88wztWfPHj377LN6/fXX//Xr0XzmGTNm\naO/evXrwwQf13HPP/evXo/nMp556qh5++OH/+PVoPvMX2eWc/3Syf7OizZf/XL/00ktRf+4vf/6y\nw5m//O+UHc78T1/83GWHv9df/toz2s4c1LHy0Ucfady4cfrOd76jPXv2SJLeeOMNZWdnq3fv3sF8\namMmTJigV199VYWFhdqwYYOk6D/zV50v2s8sSS+//LKmT5+u+fPnS7LHmSVp8+bNWrVqlST7nPmL\n7HJmu5zzi77q3yw7sNO5//n5669//astzvzPf6fmzZtnmzN/+XOXHf58f/Frz3vuuSfqztyptwl2\nuVxauHChqqqq5HA4tGzZMq1evVpPPfWU3nnnHeXk5Khr166S/r76pP/X3v2rNBJGYRh/LRQVwYCd\n2Cm2Dlh4DQZClAhpBIuAsdEu4CWkC7EQS6/ATmwsDF5AKqe2s7IQ/4BanK3GTYKzskyWnfnO82vD\nN8kDmW9yCMlIvV5Pr6+viuNYMzMzKpfLXz/cL4KfmlutlhYXF1UqlfT+/i4p/OanpyfNz88rjmPN\nzs6qXC4H39xqtVSpVFSpVFStVrW9ve2iudvtanNzU1EUSQr/vZ2cz4OK3pz4m/O6yJ3fSWtfWlrS\n1NSUpN/XrCJL6xwVUndas5np+Pj4a/+6u7sLvlnS0HWqXq9rcnJSUvGbpfTu0T26VqtpenpaUvG7\n05qTvblUKunj4yOoc1qSZBk8PDxYv983M7Pn52dbXV21OI6/Hn97e7NGo2GHh4d2eno6tPb8/Nwu\nLy+zPP1/8VPzxcWFNZtNq9fr1uv1htaG2pz4ri/U5pubGzs6OrL9/X3rdDpDa0NtPjk5sfX1dTs4\nOLCzs7OhtaE2Pz4+WrPZtJWVFWu320Nri9qcyHJeF11a+5+uWUWU1pm8r5eXl63dbgfVndY8un95\naB69ToXUbPbzHpbsXSF1pzWPfvYMqdnMLNOwMqpardr19fU4D5l7NPtAsw8emxO0h9/upXMQzX54\n7PbSPLbvhu7v79Xv97WxsTGuQ+YezT7Q7IPH5gTt4bd76RxEsx8euz01j2VYeXl50c7Ojrrdrubm\n5sZxyNyjmeZQ0eyjOUF7+O1eOgfR7KNZ8tntrTnzsPL5+alarabd3V1tbW2N4zXlHs00h4pmH80J\n2sNv99I5iGYfzZLPbo/Nme5gb2ba29vTwsKCOp3OOF9XbtFMc6ho9tGcoD38di+dg2j20Sz57PbY\nLCnbv4Hd3t7axMSEra2tWRRFFkWRXV1dZTlk7tFMc6ho9tGcoD38di+dg2j20Wzms9tjs5lZpm9W\nAAAAAOBfCeBOMQAAAABCxLACAAAAIJcYVgAAAADkEsMKAAAAgFxiWAEAAACQSwwrAAAAAHKJYQUA\nAABALjGsAAAAAMglhhUAAAAAufQLVtIrvSMFBngAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x7fe5b5c07290>"
}
],
"prompt_number": 75
},
{
"cell_type": "code",
"collapsed": false,
"input": "import numpy as np\nimport matplotlib.pyplot as plt\nmu, sigma = 100, 15\nfig, ax = plt.subplots()\nx = mu + sigma * np.random.randn(10000)\nax.set_yscale('log', basey=2)\nn, bins, histpatches = ax.hist(x, 50, facecolor='green', alpha=0.75)\nplt.show()",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAHiCAYAAADLdALcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9s3dV9+P/XpQlrqbvSeTQumOpGpQwnxjh1Iagbyc2y\nbB4T1MUhg8jN9QpkA5Fo64aiTZkE04r5sc5NqqlbBchXo1W1SShhA7GO0UvndoxWSaUprKKrcoWT\n1GQrDd0Ngxh4f/7ot/5CCf5x73V878nj8V+d+36fUx3lx5P3eZ+by7IsCwAAgEScsdgTAAAAaCSR\nAwAAJEXkAAAASRE5AABAUkQOAACQFJEDAAAkReQAAABJETkAAEBSao6cgwcPxo033hjXXnttREQc\nP348isVibN26Nb785S83bIIAAADzUXPkLF++PO67777p//3QQw/Fpk2b4otf/GI8/PDDDZkcAADA\nfDVsu9rhw4fj/PPPj4iId7zjHY26LQAAwLzMGjkTExOxbt26WLlyZXR3d8fu3btP+rnOzs6YmJiI\niIjXX3+9sbMEAACYo1yWZdlMH5icnIzJycno7e2NarUafX19sWfPnli2bFn8yZ/8STz++ONx0003\nxbZt2+LWW2+Nd77znXHFFVfE9ddff6r+PwAAAEybNXJ+1sDAQGzbti3Wr19f04DnnXdeHDlypKZr\nAQCA9J177rlx+PDhmq+fV+RUKpVYu3ZtHDhwINra2mobMJeLeXYVTeT222+P22+/fbGnQQ2sXWuz\nfq3L2rU269farF/rqrcZ5nzwQLVajY0bN8auXbtqDhwAAICFNqfImZqaisHBwRgaGoqBgYGFnhMA\nAEDNZo2cLMvihhtuiBUrVsTv//7vn4o50cQKhcJiT4EaWbvWZv1al7VrbdavtVm/09es7+SMj4/H\nmjVroqenJ3K5XEREjIyMRH9/f20DeicHAACYQb3NMO/T1eolcgAAgJmcsoMHAAAAWoHIAQAAkiJy\nAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJIicgAAgKSIHAAAICki\nBwAASIrIAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSsmSxJwCQmrGxsSiVSvO6plgsxvDw8MJM\nCABOM7ksy7JTOmAuF6d4SAAAoIXU2wy2qwEAAEkROQAAQFK8kwPQwmp5/yfCO0AApM07OQAAQFPx\nTg4AAMAbiBwAACAp3skBktcK7620whwBoFV4JwfgNCSqAGhm9TaDyAF4G0IAABaHyAEAAJJSbzN4\nJweAOfN0C4BW4EkOAADQVHxPDgAAwBs0dLvaM888E3fccUe0t7fH+vXrY3BwsJG3B05ztkoBAHPR\n0O1qf/mXfxmXXXZZ/Mqv/Ep8/OMfj7179751QNvVAACAGTTV6Wr//d//HXfccUecddZZ8c1vfjPG\nx8ffOqDIAQAAZrAokTMxMRFbtmyJo0ePRi6Xi61bt8b27dunf/21116LwcHB2LNnT8MnDEDrsdUQ\ngPlYlMiZnJyMycnJ6O3tjWq1Gn19fbFnz54466yz4s4774zjx4/HLbfcEh/72McaPmEAACBti/I9\nOR0dHdHR0REREW1tbdHV1RVHjhyJ9evXx9/8zd/Men2hUIh8Ph/5fD4KhUIUCoVapgEAACSgXC5H\nuVyOSqUSlUql7vvV/U5OpVKJtWvXxoEDB6KtrW32AT3JAWCObHMDOD0t6sED1Wo1CoVC7Ny5MwYG\nBuY2oMgBAABmsGhfBjo1NRWDg4MxNDQ058ABAABYaDU9ycmyLIrFYrS3t8fo6Oj8BvQkBwAAmMGi\nbFcbHx+PNWvWRE9PT+RyuYiIGBkZif7+/tkHFDkAAMAMmurLQOc0oMiB056XyQGAmYgcAAAgKYt2\n8AAAAEAzEjkAAEBSRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkJQliz0BAGg0XzgLcHrzZaBA\nzfxDEgBYCPU2g8gBAACaSr3N4J0cAAAgKSIHAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEA\nAJIicgAAgKSIHAAAIClLFnsCwOIbGxuLUqk07+uKxWIMDw83fkKwSGr5veD3AUDzyWVZlp3SAXO5\nOMVDAgAALaTeZrBdDQAASIrIAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACAp\nIgcAAEiKyAEAAJKypJE3O3ToUGzfvj3e9773xYUXXhg7duxo5O0BAABm1dAnOf/xH/8Rg4ODcf/9\n98f+/fsbeWsAAIA5yWVZljXqZi+++GJcffXVsWTJkvjkJz8Zw8PDbx0wl4sGDgm8wdjYWJRKpXlf\nVywWT/r7FZid33cAjVdvM9QUORMTE7Fly5Y4evRo5HK52Lp1a2zfvj0+97nPRV9fX1xxxRVx7bXX\nxt///d83fMIAAEDaFiVyJicnY3JyMnp7e6NarUZfX1/s2bMnpqam4s/+7M/inHPOife85z1xzz33\nNHzCAABA2hYlcn7WwMBAbNu2LdavXz/7gCIHAACYQb3NUPfpapVKJfbv3x+rV6+e8zWFQiHy+Xzk\n8/koFApRKBTqnQYAANCiyuVylMvlqFQqUalU6r5fXU9yqtVqFAqF2LlzZwwMDMxtQE9yAACAGdTb\nDDUfIT01NRWDg4MxNDQ058ABAABYaDU9ycmyLIrFYrS3t8fo6Oj8BvQkBwAAmMGiHDwwPj4ea9as\niZ6ensjlchERMTIyEv39/bMPKHIAAIAZNMXpavMaUOQAAAAzWLR3cgAAAJqRyAEAAJIicgAAgKSI\nHAAAICkiBwAASMqSxZ4AAJyOxsbGolQqzfu6YrEYw8PDjZ8QQEIcIQ0AADQVR0gDAAC8ge1q0KRq\n2cpiGwsAgO1qAABAk7FdDQAA4A1EDgAAkBSRAwAAJEXkAAAASRE5AABAUkQOAACQFJEDAAAkReQA\nAABJETkAAEBSliz2BACAuRsbG4tSqTTv64rFYgwPDzd+QgBNKJdlWXZKB8zl4hQPCQAAtJB6m8F2\nNQAAICkiBwAASIrIAQAAkiJyAACApIgcAAAgKY6QhgXmuFcAgFPLEdIAAEBTcYQ0AADAG4gcAAAg\nKSIHAABIisgBAACSInIAAICkNPQI6fHx8fjSl74Ur776ajzzzDPxjW98o5G3BwAAmNWCHCG9d+/e\nOHr0aNx0001vHdAR0gAAwAya8gjpL3/5y7F58+aFuDUAAMCMatquNjExEVu2bImjR49GLpeLrVu3\nxvbt2yMi4rnnnov3vve98e53v7uhE4XFNjY2FqVSad7XFYvFGB4ebvyEAAA4qZq2q01OTsbk5GT0\n9vZGtVqNvr6+2Lt3b1x00UVx++23R39/f1x++eUnH9B2NQAAYAb1NkNNT3I6Ojqio6MjIiLa2tqi\nq6srDh8+PB05sykUCpHP5yOfz0ehUIhCoVDLNAAAgASUy+Uol8tRqVSiUqnUfb+6Dx6oVCqxdu3a\nOHDgQLS1tc0+oCc5AADADBb14IFqtRobN26MXbt2zSlwAAAAFlrNkTM1NRWDg4MxNDQUAwMDjZwT\nAABAzWrarpZlWRSLxWhvb4/R0dH5DWi7GgAAMIN6m6GmyBkfH481a9ZET09P5HK5iIgYGRmJ/v7+\n2QcUOQAAwAwWJXLqIXIAAICZLOrBAwAAAM2mpu/JAQBay9jYWJRKpXlfVywWY3h4uPETAlhAtqsB\nAABNxXY1AACANxA5AABAUkQOAACQFJEDAAAkReQAAABJETkAAEBSRA4AAJAUkQMAACRF5AAAAEkR\nOQAAQFKWLPYEAIDmNTY2FqVSad7XFYvFGB4ebvyEAOYgl2VZdkoHzOXiFA8JAAC0kHqbwZMcTjv+\nqyQAQNo8yQEAAJpKvc3g4AEAACApIgcAAEiKyAEAAJIicgAAgKSIHAAAICkiBwAASIrIAQAAkiJy\nAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACApSxZ7AgBAesbGxqJUKs37umKxGMPDw42f\nEHBayWVZlp3SAXO5OMVDAgAALaTeZrBdDQAASEpDt6tlWRY7d+6M//3f/42PfvSjsWXLlkbeHgAA\nYFYNfZKzZ8+eOHz4cJx55pnR2dnZyFsDAADMSUMj59lnn41f/uVfjr/4i7+IL3zhC428NQAAwJzU\nFDkTExOxbt26WLlyZXR3d8fu3bsjIqKzszPOPvvsn9z4DK/7AAAAp15Np6tNTk7G5ORk9Pb2RrVa\njb6+vtizZ0/k8/nYtm1bnHXWWdHV1RU333zzWwd0uhoAADCDepuhpoMHOjo6oqOjIyIi2traoqur\nK44cORJdXV1x3333zXp9oVCIfD4f+Xw+CoVCFAqFWqYBAAAkoFwuR7lcjkqlEpVKpe771f09OZVK\nJdauXRsHDhyItra22Qf0JAcAAJjBon5PTrVajY0bN8auXbvmFDgAAAALrebImZqaisHBwRgaGoqB\ngYFGzgkAAKBmNW1Xy7IsisVitLe3x+jo6PwGtF0NAACYQb3NUFPkjI+Px5o1a6KnpydyuVxERIyM\njER/f//sA4ocAABgBosSOfUQOQAAwEwW5QhpaAZjY2NRKpXmfV2xWIzh4eHGTwgAgKbgSQ4AANBU\nFvUIaQAAgGYjcgAAgKSIHAAAICkiBwAASIrIAQAAkiJyAACApIgcAAAgKb4MFABoGr7oGWgEXwYK\nAAA0FV8GCgAA8AYiBwAASIrIAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACAp\nSxZ7AjA2NhalUmne1xWLxRgeHm78hAAAaGm5LMuyUzpgLheneEgAAKCF1NsMtqsBAABJETkAAEBS\nRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkBSRAwAAJEXkAAAASRE5AABAUhoaOeVyOa644oq4\n+eab48knn2zkrQEAAOakoZFzxhlnxHve85545ZVXorOzs5G3BgAAmJNclmVZo26WZVnkcrk4evRo\nfPrTn44HH3zwrQPmctHAIQEAgMTU2ww1PcmZmJiIdevWxcqVK6O7uzt27949PZmIiLPPPjteeeWV\nmicFAABQqyW1XLR06dIYHR2N3t7eqFar0dfXFxs2bIjvfve78U//9E9x7Nix2LZtW6PnCgAAMKuG\nbFcbGBiIbdu2xfr162cf0HY1AABgBvU2Q01Pct6oUqnE/v37Y/Xq1XO+plAoRD6fj3w+H4VCIQqF\nQr3TAAAAWlS5XI5yuRyVSiUqlUrd96vrSU61Wo1CoRA7d+6MgYGBuQ3oSQ4AADCDRTl4ICJiamoq\nBgcHY2hoaM6BAwAAsNBqepKTZVkUi8Vob2+P0dHR+Q3oSQ4AADCDepuhpsgZHx+PNWvWRE9Pz/Sx\n0SMjI9Hf3z/7gCIHAACYwaJETj1EDgAAMJNFeycHAACgGYkcAAAgKXV/Tw781NjYWJRKpXlfVywW\nY3h4uPETAuC04e8g4I28kwMAADQV7+QAAAC8gcgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJIi\ncgAAgKSIHAAAICkiBwAASIrIAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACAp\nIgcAAEiKyAEAAJIicgAAgKSIHAAAIClLFnsCNJ+xsbEolUrzvq5YLMbw8HDjJwQAAPOQy7IsO6UD\n5nJxiocEAABaSL3NYLsaAACQFJEDAAAkReQAAABJETkAAEBSRA4AAJAUR0gDAKetWr42wVcmQPNz\nhDQAANBUmu4I6ePHj8ell14ajzzySKNvDQAAMKuGR84999wTv/3bv93o2wIAAMxJQ9/J+ed//udY\nsWJFvPzyy428LQAAwJzVFDkTExOxZcuWOHr0aORyudi6dWts3749nnzyyTh+/Hg888wz8a53vSuu\nvPLKyOVyjZ4zAADA26rp4IHJycmYnJyM3t7eqFar0dfXF3v27Imurq6IiCiVSnHOOefElVde+dYB\nHTwAAADMoN5mqOlJTkdHR3R0dERERFtbW3R1dcWRI0emI6dYLM54faFQiHw+H/l8PgqFQhQKhVqm\nAQAAJKBcLke5XI5KpRKVSqXu+9V9hHSlUom1a9fGgQMHoq2tbfYBPckBAABmsKhHSFer1di4cWPs\n2rVrToEDAACw0GqOnKmpqRgcHIyhoaEYGBho5JwAAABqVtN2tSzLolgsRnt7e4yOjs5vQNvVAACA\nGdTbDDVFzvj4eKxZsyZ6enqmj4geGRmJ/v7+2QcUOQAAwAwWJXLqIXIAAICZLOrBAwAAAM1G5AAA\nAEkROQAAQFJEDgAAkBSRAwAAJEXkAAAASRE5AABAUkQOAACQFJEDAAAkReQAAABJETkAAEBSRA4A\nAJCUJYs9AQCAVjI2NhalUmne1xWLxRgeHm78hIC3yGVZlp3SAXO5OMVDAgAALaTeZrBdDQAASIrI\nAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJKyZLEnwMIZ\nGxuLUqk07+uKxWIMDw83fkIAAHAK5LIsy07pgLlcnOIhAQCAFlJvM9iuBgAAJEXkAAAASRE5AABA\nUkQOAACQFKertYhaTkpzShoAAKcjp6sBAABNpalOV/vud78bN998c2zatCnuv//+Rt4aAABgThbk\nSc7rr78e1113Xfzd3/3dWwf0JAcAAJhBUz3JiYj4h3/4h/it3/qtuO666xp9awAAgFnV9CRnYmIi\ntmzZEkePHo1cLhdbt26N7du3v+kzH//4x2Pv3r1vHdCTHAAAYAb1NkNNp6stXbo0RkdHo7e3N6rV\navT19cWGDRvi6NGj8dBDD8XLL78c69atq3lSAAAAtaopcjo6OqKjoyMiItra2qKrqyuOHDkS69ev\nj7Vr1zZ0ggAAAPNR9/fkVCqV2L9/f6xevXrO1xQKhcjn85HP56NQKEShUKh3GgAAQIsql8tRLpej\nUqlEpVKp+351na5WrVajUCjEzp07Y2BgYG4DeicHAACYwaKdrjY1NRWDg4MxNDQ058ABAABYaDU9\nycmyLIrFYrS3t8fo6Oj8BvQkBwAAmEG9zVBT5IyPj8eaNWuip6cncrlcRESMjIxEf3//7AOKHAAA\nYAaLEjn1EDkAAMBMFu2dHAAAgGYkcgAAgKTU/T05AADMbmxsLEql0ryvKxaLMTw83PgJQcK8kwMA\nADQV7+QAAAC8gcgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJIicgAAgKSIHAAAIClLFnsCpxvf\ndgwAzId/O8D85bJ6vkq0lgHr/PZSAAAgbfU2g+1qAABAUkQOAACQFJEDAAAkReQAAABJETkAAEBS\nRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkBSRAwAAJEXkAAAASRE5AABAUkQOAACQFJEDAAAk\nReQAAABJETkAAEBSRA4AAJAUkQMAACRlSSNvtnfv3njkkUfixz/+cdxwww2xYcOGRt4eAABgVrks\ny7JG3/TYsWPxR3/0R3Hfffe9dcBcLhZgSAAAIBH1NsOCbFf78z//87j11lsX4tYAAAAzqilyJiYm\nYt26dbFy5cro7u6O3bt3R0RElmWxY8eO+M3f/M3o7e1t6EQBAADmoqZ3cpYuXRqjo6PR29sb1Wo1\n+vr6YsOGDfH444/Hv/zLv8SPf/zj+K//+q/43d/93UbPFwAAYEYNeSdnYGAgtm3bFuvXr599QO/k\nAAAAM6i3Geo+Xa1SqcT+/ftj9erVc76mUChEPp+PfD4fhUIhCoVCvdMAAABaVLlcjnK5HJVKJSqV\nSt33q+tJTrVajUKhEDt37oyBgYG5DehJDgAAMINFO11tamoqBgcHY2hoaM6BAwAAsNBqepKTZVkU\ni8Vob2+P0dHR+Q3oSQ4AADCDepuhpsgZHx+PNWvWRE9PT+RyuYiIGBkZif7+/tkHFDkAAMAMFiVy\n6iFyAACAmSzaOzkAAADNSOQAAABJETkAAEBSRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkBSR\nAwAAJEXkAAAASRE5AABAUkQOAACQlCWLPYFWNTY2FqVSad7XFYvFGB4ebvyEAACAiIjIZVmWndIB\nc7k4xUMCAAAtpN5msF0NAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJIicgAAgKSIHAAA\nICkiBwAASIrIAQAAkiJyAACApIgcAAAgKSIHAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEA\nAJIicgAAgKQ0NHIOHjwYN954Y1x77bWNvC0AAMCcNTRyli9fHvfdd18jbwkAADAvtqsBAABJqSly\nJiYmYt26dbFy5cro7u6O3bt3N3peAAAANakpcpYuXRqjo6Nx4MCBeOqpp+Kv/uqv4j//8z/jhRde\niN/7vd+L73znO3H33Xc3eq4AAACzWlLLRR0dHdHR0REREW1tbdHV1RVHjhyJrq6u+Ou//utZry8U\nCpHP5yOfz0ehUIhCoVDLNBpibGwsSqXSvK8rFosxPDzc+AkBALQg/6aiHuVyOcrlclQqlahUKnXf\nL5dlWVbPDSqVSqxduzYOHDgQbW1tsw+Yy0WdQwIAAAmrtxnqOnigWq3Gxo0bY9euXXMKHAAAgIVW\nc+RMTU3F4OBgDA0NxcDAQCPnBAAAULOatqtlWRbFYjHa29tjdHR0fgPargYAAMyg3maoKXLGx8dj\nzZo10dPTE7lcLiIiRkZGor+/f/YBRQ4AADCDRYmceogcAABgJot68AAAAECzETkAAEBSRA4AAJAU\nkQMAACRF5AAAAEkROQAAQFJEDgAAkBSRAwAAJEXkAAAASRE5AABAUkQOAACQFJEDAAAkReQAAABJ\nETkAAEBSRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkBSRAwAAJEXkAAAASRE5AABAUkQOAACQ\nFJEDAAAkReQAAABJETkAAEBSRA4AAJAUkQMAACRF5AAAAEkROQAAQFJEDgAAkBSRAwAAJGVJI292\n/PjxuOWWW+Lnfu7nolAoxObNmxt5ewAAgFk19EnOQw89FJs2bYovfvGL8fDDDzfy1gAAAHPS0Mg5\nfPhwnH/++RER8Y53vKORt6ZJlMvlxZ4CNbJ2rc36tS5r19qsX2uzfqevmiJnYmIi1q1bFytXrozu\n7u7YvXt3RER0dnbGxMRERES8/vrrjZslTcMfFq3L2rU269e6rF1rs36tzfqdvmp6J2fp0qUxOjoa\nvb29Ua1Wo6+vLzZs2BDXXHNN3HrrrfHII4/E1Vdf3ei5AgAAzKqmyOno6IiOjo6IiGhra4uurq44\ncuRIdHV1xQMPPFDXhD7/+c/HD37wg3lf96d/+qfxrne9q66xAQCA1pfLsiyr5waVSiXWrl0bBw4c\niLa2tlk/f95558WRI0fqGRIAAEjYueeeG4cPH675+rqOkK5Wq7Fx48bYtWvXnAInIuqaLAAAwGxq\nPl1tamoqBgcHY2hoKAYGBho5JwAAgJrVtF0ty7IoFovR3t4eo6OjCzEvAACAmtT0JOcb3/hGPPjg\ng/G1r30tVq1aFatWrYrHHnvspJ997bXXYtWqVXHVVVdFRMQLL7wQGzZsiAsvvDB+/dd/PY4dO1b7\n7FlQx44di40bN0ZXV1esWLEi/v3f/936tZCRkZFYuXJlXHzxxbF58+Z45ZVXrF+T+tSnPhXLli2L\niy++ePpnM63VyMhIfPjDH46LLroovvrVry7GlHmDk63fbbfdFl1dXXHJJZfENddcEy+++OL0r1m/\n5nGytfupz372s3HGGWfECy+8MP0za9dc3m79Pv/5z0dXV1d0d3fHjh07pn9u/ZrLydbv6aefjssu\nuyxWrVoVl156aXzrW9+a/rV5r1+2wD772c9mmzdvzq666qosy7Lstttuy+6+++4sy7Lsrrvuynbs\n2LHQU6BGW7Zsye6///4sy7JsamoqO3bsmPVrEQcPHsyWL1+evfzyy1mWZdmmTZuysbEx69ekvv71\nr2f79u3Luru7p3/2dmt14MCB7JJLLslOnDiRHTx4MPvQhz6Uvfbaa4syb37iZOv31a9+dXpdduzY\nYf2a1MnWLsuy7Lnnnst+4zd+I8vn89kPf/jDLMusXTM62fo98cQT2a/92q9lJ06cyLIsy44ePZpl\nmfVrRidbv7Vr12aPPfZYlmVZ9uijj2aFQiHLstrWr+Z3cubi0KFD8eijj8aNN94Y2f+3K+7hhx+O\nYrEYERHFYjH27NmzkFOgRi+++GL867/+a3zqU5+KiIglS5bEe9/7XuvXIn7+538+li5dGi+99FK8\n+uqr8dJLL8W5555r/ZrUFVdcEe973/ve9LO3W6u9e/fG9ddfH0uXLo18Ph8XXHBBPP3006d8zvz/\nTrZ+GzZsiDPO+MlfsatXr45Dhw5FhPVrNidbu4iIT3/603HPPfe86WfWrvmcbP2+8IUvxB//8R/H\n0qVLIyLinHPOiQjr14xOtn4f+MAHpp98Hzt2LM4777yIqG39FjRy/uAP/iDuvffe6T/oIyKef/75\nWLZsWURELFu2LJ5//vmFnAI1OnjwYJxzzjnxO7/zO/GRj3wkbrrppjh+/Lj1axG/8Au/EH/4h38Y\nH/zgB+Pcc8+Ns88+OzZs2GD9WsjbrdWRI0eis7Nz+nOdnZ1OrWxyDzzwQFx55ZURYf1awd69e6Oz\nszN6enre9HNr1xq+973vxde//vW4/PLLo1AoxLe//e2IsH6t4q677pr+98ttt90WIyMjEVHb+i1Y\n5PzjP/5jvP/9749Vq1ZNP8X5WblcLnK53EJNgTq8+uqrsW/fvrjlllti37598e53vzvuuuuuN33G\n+jWv73//+/G5z30uKpVKHDlyJKrVajz44INv+oz1ax2zrZV1bF6f+cxn4swzz4zNmze/7WesX/N4\n6aWX4s4774w77rhj+mdv92+YCGvXjF599dX40Y9+FE899VTce++9sWnTprf9rPVrPjfccEPs3r07\nnnvuuRgFjEq8AAADCklEQVQdHZ3eUXQys63fgkXON7/5zXj44Ydj+fLlcf3118cTTzwRn/zkJ2PZ\nsmUxOTkZERE/+MEP4v3vf/9CTYE6dHZ2RmdnZ1x66aUREbFx48bYt29fdHR0WL8W8O1vfzs+9rGP\nRXt7eyxZsiSuueaa+Ld/+zfr10Le7s/K8847LyYmJqY/d+jQoenH+TSXsbGxePTRR+NLX/rS9M+s\nX3P7/ve/H5VKJS655JJYvnx5HDp0KPr6+uL555+3di2is7MzrrnmmoiIuPTSS+OMM86I//mf/7F+\nLeLpp5+OT3ziExHxk397/nRLWi3rt2CRc+edd8bExEQcPHgwvvKVr8Sv/uqvxt/+7d/G1VdfHaVS\nKSIiSqWS79hpUh0dHXH++efHs88+GxERjz/+eKxcuTKuuuoq69cCLrroonjqqafi//7v/yLLsnj8\n8cdjxYoV1q+FvN2flVdffXV85StfiRMnTsTBgwfje9/7Xlx22WWLOVVO4rHHHot777039u7dG+98\n5zunf279mtvFF18czz//fBw8eDAOHjwYnZ2dsW/fvli2bJm1axEDAwPxxBNPRETEs88+GydOnIhf\n/MVftH4t4oILLognn3wyIiKeeOKJuPDCCyOixj87F+a8hDcrl8vTp6v98Ic/zNavX599+MMfzjZs\n2JD96Ec/OhVToAbf+c53so9+9KNZT09P9olPfCI7duyY9Wshd999d7ZixYqsu7s727JlS3bixAnr\n16Suu+667AMf+EC2dOnSrLOzM3vggQdmXKvPfOYz2Yc+9KHsl37pl6ZPoWHx/Oz63X///dkFF1yQ\nffCDH8x6e3uz3t7e7Oabb57+vPVrHj9duzPPPHP6994bLV++fPp0tSyzds3mZOt34sSJbGhoKOvu\n7s4+8pGPZF/72temP2/9msvJ/u771re+lV122WXZJZdckl1++eXZvn37pj8/3/Wr6ctAAQAAmtWC\nnq4GAABwqokcAAAgKSIHAABIisgBAACSInIAAICkiBwAACApIgcAAEiKyAEAAJLy/wBrqa6XKniM\n+AAAAABJRU5ErkJggg==\n",
"text": "<matplotlib.figure.Figure at 0x7fe5b609fdd0>"
}
],
"prompt_number": 76
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment