Last active
March 10, 2021 12:46
-
-
Save hakatashi/7d5f4dfe1ddc417a3bbe00ae737aa6ad to your computer and use it in GitHub Desktop.
zer0pts CTF 2021 NOT Mordell primes solver script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
p = 13046889097521646369087469608188552207167764240347195472002158820809408567610092324592843361428437763328630003678802379234688335664907752858268976392979073 | |
a = 10043619664651911066883029686766120169131919507076163314397915307085965058341170072938120477911396027902856306859830431800181085603701181775623189478719241 | |
b = 12964455266041997431902182249246681423017590093048617091076729201020090112909200442573801636087298080179764338147888667898243288442212586190171993932442177 | |
Gx = 11283606203023552880751516189906896934892241360923251780689387054183187410315259518723242477593131979010442607035913952477781391707487688691661703618439980 | |
Gy = 12748862750577419812619234165922125135009793011470953429653398381275403229335519006908182956425430354120606424111151410237675942385465833703061487938776991 | |
N = 22607234899418506929126001268361871457071114354768385952661316782742548112938224795906631400222949082488044126564531809419277303594848211922000498018284382244900831520857366772119155202621331079644609558409672584261968029536525583401488106146231216232578818115404806474812984250682928141729397248414221861387 | |
c = 15850849981973267982600456876579257471708532525108633915715902825196241000151529259632177065183069032967782114646012018721535909022877307131272587379284451827627191021621449090672315265556221217089055578013603281682705976215360078119427612168005716370941190233189775697324558168779779919848728188151630185987 | |
R.<x> = PolynomialRing(GF(p)) | |
L = (x * (Gy^2 + x^3 + a*x + b) - (N + x^2 + Gx*x) * (Gx - x)^2)^2 - 4 * Gy^2 * x^2 * (x^3 + a*x + b) | |
roots = L.roots() | |
print(roots) | |
rsa_p = int(roots[0][0]) | |
assert(N % rsa_p == 0) | |
rsa_q = N // rsa_p | |
e = 0x10001 | |
phi = (rsa_p - 1) * (rsa_q - 1) | |
d = pow(e, -1, phi) | |
m = pow(c, d, N) | |
print(int(m).to_bytes(40, 'big')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment