Skip to content

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Quaternion and Vector3 classes for Java
package uk.co.halfninja.math;
/**
* Quaternions are data structures built from unicorn horns.
*
* I nabbed this implementation from The Internet.
*/
public final class Quaternion {
private double x;
private double y;
private double z;
private double w;
//private float[] matrixs;
public Quaternion(final Quaternion q) {
this(q.x, q.y, q.z, q.w);
}
public Quaternion(double x, double y, double z, double w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
public void set(final Quaternion q) {
//matrixs = null;
this.x = q.x;
this.y = q.y;
this.z = q.z;
this.w = q.w;
}
public Quaternion(Vector3 axis, double angle) {
set(axis, angle);
}
public double norm() {
return Math.sqrt(dot(this));
}
public double getW() {
return w;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
/**
* @param axis
* rotation axis, unit vector
* @param angle
* the rotation angle
* @return this
*/
public Quaternion set(Vector3 axis, double angle) {
//matrixs = null;
double s = (double) Math.sin(angle / 2);
w = (double) Math.cos(angle / 2);
x = axis.getX() * s;
y = axis.getY() * s;
z = axis.getZ() * s;
return this;
}
public Quaternion mulThis(Quaternion q) {
//matrixs = null;
double nw = w * q.w - x * q.x - y * q.y - z * q.z;
double nx = w * q.x + x * q.w + y * q.z - z * q.y;
double ny = w * q.y + y * q.w + z * q.x - x * q.z;
z = w * q.z + z * q.w + x * q.y - y * q.x;
w = nw;
x = nx;
y = ny;
return this;
}
public Quaternion scaleThis(double scale) {
if (scale != 1) {
//matrixs = null;
w *= scale;
x *= scale;
y *= scale;
z *= scale;
}
return this;
}
public Quaternion divThis(double scale) {
if (scale != 1) {
//matrixs = null;
w /= scale;
x /= scale;
y /= scale;
z /= scale;
}
return this;
}
public double dot(Quaternion q) {
return x * q.x + y * q.y + z * q.z + w * q.w;
}
public boolean equals(Quaternion q) {
return x == q.x && y == q.y && z == q.z && w == q.w;
}
public Quaternion interpolateThis(Quaternion q, double t) {
if (!equals(q)) {
double d = dot(q);
double qx, qy, qz, qw;
if (d < 0f) {
qx = -q.x;
qy = -q.y;
qz = -q.z;
qw = -q.w;
d = -d;
} else {
qx = q.x;
qy = q.y;
qz = q.z;
qw = q.w;
}
double f0, f1;
if ((1 - d) > 0.1f) {
double angle = (double) Math.acos(d);
double s = (double) Math.sin(angle);
double tAngle = t * angle;
f0 = (double) Math.sin(angle - tAngle) / s;
f1 = (double) Math.sin(tAngle) / s;
} else {
f0 = 1 - t;
f1 = t;
}
x = f0 * x + f1 * qx;
y = f0 * y + f1 * qy;
z = f0 * z + f1 * qz;
w = f0 * w + f1 * qw;
}
return this;
}
public Quaternion normalizeThis() {
return divThis(norm());
}
public Quaternion interpolate(Quaternion q, double t) {
return new Quaternion(this).interpolateThis(q, t);
}
/**
* Converts this Quaternion into a matrix, returning it as a float array.
*/
public float[] toMatrix() {
float[] matrixs = new float[16];
toMatrix(matrixs);
return matrixs;
}
/**
* Converts this Quaternion into a matrix, placing the values into the given array.
* @param matrixs 16-length float array.
*/
public final void toMatrix(float[] matrixs) {
matrixs[3] = 0.0f;
matrixs[7] = 0.0f;
matrixs[11] = 0.0f;
matrixs[12] = 0.0f;
matrixs[13] = 0.0f;
matrixs[14] = 0.0f;
matrixs[15] = 1.0f;
matrixs[0] = (float) (1.0f - (2.0f * ((y * y) + (z * z))));
matrixs[1] = (float) (2.0f * ((x * y) - (z * w)));
matrixs[2] = (float) (2.0f * ((x * z) + (y * w)));
matrixs[4] = (float) (2.0f * ((x * y) + (z * w)));
matrixs[5] = (float) (1.0f - (2.0f * ((x * x) + (z * z))));
matrixs[6] = (float) (2.0f * ((y * z) - (x * w)));
matrixs[8] = (float) (2.0f * ((x * z) - (y * w)));
matrixs[9] = (float) (2.0f * ((y * z) + (x * w)));
matrixs[10] = (float) (1.0f - (2.0f * ((x * x) + (y * y))));
}
}
package uk.co.halfninja.math;
public final class Vector3 {
private double x,y,z;
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
public Vector3(double ix, double iy, double iz) {
x = ix;
y = iy;
z = iz;
}
public void set(double ix, double iy, double iz) {
x = ix;
y = iy;
z = iz;
}
public double magnitude() {
return Math.sqrt(x*x+y*y+z*z);
}
public void multiply(double f) {
x *= f;
y *= f;
z *= f;
}
public void normalise() {
double mag = magnitude();
x /= mag;
y /= mag;
z /= mag;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.